搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2 cm电子回旋共振离子推力器离子源中磁场对等离子体特性与壁面电流影响的数值模拟

夏旭 杨涓 付瑜亮 吴先明 耿海 胡展

引用本文:
Citation:

2 cm电子回旋共振离子推力器离子源中磁场对等离子体特性与壁面电流影响的数值模拟

夏旭, 杨涓, 付瑜亮, 吴先明, 耿海, 胡展

Numerical simulation of influence of magnetic field on plasma characteristics and surface current of ion source of 2-cm electron cyclotron resonance ion thruster

Xia Xu, Yang Juan, Fu Yu-Liang, Wu Xian-Ming, Geng Hai, Hu Zhan
PDF
HTML
导出引用
  • 电子回旋共振离子推力器(electron cyclotron resonance ion thruster, ECRIT)离子源内等离子体分布会影响束流引出, 而磁场结构决定的ECR区与天线的相对位置共同影响了等离子体分布. 在鞘层作用下, 等离子体中的离子或电子被加速对壁面产生溅射, 形成壁面离子或电子电流, 造成壁面磨损和等离子体损失, 因此研究壁面电流与等离子体特征十分重要. 为此本文建立2 cm ECRIT的粒子PIC/MCC (particle-in-cell with Monte Carlo collision)仿真模型, 数值模拟研究磁场结构对离子源内等离子体与壁面电流特性的影响. 计算表明, 当ECR区位于天线上游时, 等离子体集中在天线上游和内外磁环间, 栅极前离子密度最低, 故离子源引出束流、磁环端面电流和天线壁面电流较低. ECR区位于天线下游时, 天线和栅极上游附近的等离子体密度较高, 故离子源引出束流、天线壁面电流和磁环端面电流较高. 腔体壁面等离子体分布与电流受磁场影响最小.
    The cathode-less miniature electron cyclotron resonance ion thruster (ECRIT) has the advantages of long-life and simple-structure. In the ECRIT ion source, the plasma distribution will affect the beam extraction, and the relative position of the ECR layer determined by the magnetic field structure and the flat-ring antenna together affect the plasma distribution. Due to the sheath, the ions or electrons in the plasma will be accelerated to sputter the surface of wall and induce plasma loss. It is important to investigate the wall currents and plasma characteristics. Therefore, particle-in-cell with Monte Carlo collision (PIC/MCC) model is established in this article to study the influence of the magnetic field structure on the plasma and wall current characteristics of 2-cm ECRIT ion source. The calculation results show that the electrons are confined near the ECR layer of antenna by the magnetic mirror, which leads the plasma to be distributed near the ECR layer. When the ECR layer is located on the upstream side of the flat-ring antenna, the plasma is concentrated between the antenna and magnet rings, and the ion density in front of the grid is lowest, which results in a lower ion beam current extracted from ion source and a lower current on the surface of magnetic ring and antenna. When the ECR layer is located on the downstream side of the flat-ring antenna, the plasma density near the upstream side of the antenna and grid is high, which results in higher ion beam current extracted from the ion source and higher current on the surface of antenna and magnetic ring. The plasma distribution and the total wall current of the ion source are affected weakly by the magnetic field structure. In this magnetic field structure, the ion sputtering on the flat-ring antenna is serious. Although such a magnetic field design can increase the extracted ion beam current, it will shorten the working life of the ion source. In the future, when designing a new thruster, it is necessary to weigh the ion current of extraction and lifetime to select the appropriate magnetic field structure.
      通信作者: 杨涓, yangjuan@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11875222)资助的课题
      Corresponding author: Yang Juan, yangjuan@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11875222)
    [1]

    Koizumi H, Kuninaka H 2010 J. Propuls. Power. 26 601Google Scholar

    [2]

    Nishiyama K, Hosoda S, Koizumi H, Shimizu Y, Funaki I, Kuninaka H, Bodendorfer M, Kawaguchi J, Nakata D 2010 Proceeding of 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Nashville, USA, July 25-28, 2010 p6862

    [3]

    Wen J M, Peng S X, Ren H T, Zhang T, Zhang J F, Wu W B, Sun J, Guo Z Y, Chen J E 2018 Chin. Phys. B 27 055204Google Scholar

    [4]

    Peng S X, Zhang A L, Ren H T, Zhang T, Xu Y, Zhang J F, Gong J H, Guo Z Y, Chen J E 2015 Chin. Phys. B 24 075203Google Scholar

    [5]

    Nishiyama K, Hosoda S, Ueno K, Tsukizaki R, Kuninaka H 2016 Trans. JSASS Aerospace Tech. Japan 14 131Google Scholar

    [6]

    Koizumi H, Komurasaki K, Aoyama J, Yamaguchi K 2014 Trans. JSASS Aerospace Tech. Japan 12 19Google Scholar

    [7]

    Koizumi H, Kawahara H, Yaginuma K, Asakawa J, Nakagawa Y, Nakagawa Y, Kojima S, Matsuguma T, Funase R, Nakatsuka J, Komurasaki K 2016 Trans. JSASS Aerospace Tech. Japan 14 13Google Scholar

    [8]

    Tani Y, Tsukizaki R, Koda D, Nishiyama K, Kuninaka H 2019 Acta Astronautica 157 425Google Scholar

    [9]

    汤明杰, 杨涓, 金逸舟, 冯冰冰, 罗立涛 2015 物理学报 64 215202Google Scholar

    Tang M J, Yang J, Jin Y Z, Feng B B, Luo L T 2015 Acta Phys. Sin. 64 215202Google Scholar

    [10]

    孟海波, 杨涓, 朱康武, 朱康武, 孙俊, 黄益智, 金逸舟, 刘宪闯 2018 西北工业大学学报 36 42Google Scholar

    Meng H B, Yang J, Zhu K W, Sun J, Huang Y Z, Jin Y Z, Liu X C 2018 J. NorthWest Polytechnical Univ. 36 42Google Scholar

    [11]

    Kajimura Y, Kanagawa T, Yamamoto N, Nakashima H 2008 AIP Conf. Proc. 1084 939Google Scholar

    [12]

    Takao Y, Koizumi H, Komurasaki K, Eriguchi K, Ono K 2014 Plasma Sources Sci. Technol. 23 064004Google Scholar

    [13]

    Takao Y, Koizumi H, Kasagi Y, Komurasaki K 2016 Trans. JSASS Aerospace Tech. Japan 14 41Google Scholar

    [14]

    Hiramoto K, Nakagawa Y, Koizumi H, Komurasaki K, Takao Y 2016 Proceedings of 52nd AIAA/SAE/ASEE Joint Propulsion Conference & Exhibit Salt Lake City, USA, July 25–27, 2016 p4946

    [15]

    夏旭, 杨涓, 金逸舟, 杭观荣, 付瑜亮, 胡展 2019 物理学报 68 235202Google Scholar

    Xia X, Yang J, Jin Y Z, Hang G R, Fu Y L, Hu Z 2019 Acta Phys. Sin. 68 235202Google Scholar

    [16]

    Takao Y, Eriguchi K, Ono K, Sugita Y, Koizumi H, Komurasaki K 2014 proceeding of 50th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference, Cleveland, USA, July 28-30, 2014 p3829

    [17]

    Szabo J 2001 Ph. D. Dissertation (Massachusetts: Institute of Technology)

    [18]

    Nanbu K 2000 IEEE T. Plasma. Sci. 28 971Google Scholar

    [19]

    Weissler G L, Carlson R W 1980 Vacuum Physics and Technology (New York: Academic Press) pp14−18

    [20]

    迈克尔 A. 力伯曼, 阿伦 J. 里登伯格 著 (蒲以康 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社) 第374− 375页

    Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp374−375 (in Chinese)

    [21]

    Funaki I 2004 J. Propuls. Power. 20 718Google Scholar

  • 图 1  2 cm ECRIT离子源结构示意图

    Fig. 1.  Schematic diagram of the 2 cm ECRIT ion source internal structure.

    图 2  2 cm ECRIT离子源的放电形貌

    Fig. 2.  Discharge image of 2 cm ECRIT ion source.

    图 3  不同磁场结构下磁场分布: (a) 1号源; (b) 2号源; (c) 3号源

    Fig. 3.  Distribution of magnetic flux density inside of the discharge chamber: (a) 1; (b) 2; (c) 3.

    图 4  带电粒子数随计算步的变化

    Fig. 4.  Quantities of charged particles versus computation step.

    图 5  不同磁场结构下等离子体分布: (a)电子密度; (b)离子密度

    Fig. 5.  Plasma distribution of ion source with different magnetic circuit: (a) Electron density; (b) ion density.

    图 6  不同磁场结构下离子源的电子温度

    Fig. 6.  Electron temperature of ion source with different magnetic circuit.

    图 7  不同磁场结构下离子源内各壁面的电流密度统计

    Fig. 7.  Current density statistics on each surface of ion source with different magnetic circuit.

    表 1  磁场结构参数

    Table 1.  Magnetic circuit structure parameters.

    H1/mmW1/mmH2/mmW2/mm
    1号源 5.4 2 5.4 1.65
    2号源 5.6 2.7 5.8 1.8
    3号源 5.8 3 5.6 1.8
    下载: 导出CSV
  • [1]

    Koizumi H, Kuninaka H 2010 J. Propuls. Power. 26 601Google Scholar

    [2]

    Nishiyama K, Hosoda S, Koizumi H, Shimizu Y, Funaki I, Kuninaka H, Bodendorfer M, Kawaguchi J, Nakata D 2010 Proceeding of 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Nashville, USA, July 25-28, 2010 p6862

    [3]

    Wen J M, Peng S X, Ren H T, Zhang T, Zhang J F, Wu W B, Sun J, Guo Z Y, Chen J E 2018 Chin. Phys. B 27 055204Google Scholar

    [4]

    Peng S X, Zhang A L, Ren H T, Zhang T, Xu Y, Zhang J F, Gong J H, Guo Z Y, Chen J E 2015 Chin. Phys. B 24 075203Google Scholar

    [5]

    Nishiyama K, Hosoda S, Ueno K, Tsukizaki R, Kuninaka H 2016 Trans. JSASS Aerospace Tech. Japan 14 131Google Scholar

    [6]

    Koizumi H, Komurasaki K, Aoyama J, Yamaguchi K 2014 Trans. JSASS Aerospace Tech. Japan 12 19Google Scholar

    [7]

    Koizumi H, Kawahara H, Yaginuma K, Asakawa J, Nakagawa Y, Nakagawa Y, Kojima S, Matsuguma T, Funase R, Nakatsuka J, Komurasaki K 2016 Trans. JSASS Aerospace Tech. Japan 14 13Google Scholar

    [8]

    Tani Y, Tsukizaki R, Koda D, Nishiyama K, Kuninaka H 2019 Acta Astronautica 157 425Google Scholar

    [9]

    汤明杰, 杨涓, 金逸舟, 冯冰冰, 罗立涛 2015 物理学报 64 215202Google Scholar

    Tang M J, Yang J, Jin Y Z, Feng B B, Luo L T 2015 Acta Phys. Sin. 64 215202Google Scholar

    [10]

    孟海波, 杨涓, 朱康武, 朱康武, 孙俊, 黄益智, 金逸舟, 刘宪闯 2018 西北工业大学学报 36 42Google Scholar

    Meng H B, Yang J, Zhu K W, Sun J, Huang Y Z, Jin Y Z, Liu X C 2018 J. NorthWest Polytechnical Univ. 36 42Google Scholar

    [11]

    Kajimura Y, Kanagawa T, Yamamoto N, Nakashima H 2008 AIP Conf. Proc. 1084 939Google Scholar

    [12]

    Takao Y, Koizumi H, Komurasaki K, Eriguchi K, Ono K 2014 Plasma Sources Sci. Technol. 23 064004Google Scholar

    [13]

    Takao Y, Koizumi H, Kasagi Y, Komurasaki K 2016 Trans. JSASS Aerospace Tech. Japan 14 41Google Scholar

    [14]

    Hiramoto K, Nakagawa Y, Koizumi H, Komurasaki K, Takao Y 2016 Proceedings of 52nd AIAA/SAE/ASEE Joint Propulsion Conference & Exhibit Salt Lake City, USA, July 25–27, 2016 p4946

    [15]

    夏旭, 杨涓, 金逸舟, 杭观荣, 付瑜亮, 胡展 2019 物理学报 68 235202Google Scholar

    Xia X, Yang J, Jin Y Z, Hang G R, Fu Y L, Hu Z 2019 Acta Phys. Sin. 68 235202Google Scholar

    [16]

    Takao Y, Eriguchi K, Ono K, Sugita Y, Koizumi H, Komurasaki K 2014 proceeding of 50th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference, Cleveland, USA, July 28-30, 2014 p3829

    [17]

    Szabo J 2001 Ph. D. Dissertation (Massachusetts: Institute of Technology)

    [18]

    Nanbu K 2000 IEEE T. Plasma. Sci. 28 971Google Scholar

    [19]

    Weissler G L, Carlson R W 1980 Vacuum Physics and Technology (New York: Academic Press) pp14−18

    [20]

    迈克尔 A. 力伯曼, 阿伦 J. 里登伯格 著 (蒲以康 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社) 第374− 375页

    Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Materials Processing (Beijing: Science Press) pp374−375 (in Chinese)

    [21]

    Funaki I 2004 J. Propuls. Power. 20 718Google Scholar

  • [1] 汪耀庭, 罗岚月, 李和平, 姜东君, 周明胜. 外加电场作用下的壁面约束衰亡等离子体中带电粒子非平衡输运特性. 物理学报, 2022, 71(23): 232801. doi: 10.7498/aps.71.20221431
    [2] 夏旭, 杨涓, 金逸舟, 杭观荣, 付瑜亮, 胡展. 磁路和天线位置对2 cm电子回旋共振离子推力器性能影响的实验研究. 物理学报, 2019, 68(23): 235202. doi: 10.7498/aps.68.20191122
    [3] 王宬朕, 董全力, 刘苹, 吴奕莹, 盛政明, 张杰. 激光等离子体中高能电子各向异性压强的粒子模拟. 物理学报, 2017, 66(11): 115203. doi: 10.7498/aps.66.115203
    [4] 金逸舟, 杨涓, 冯冰冰, 罗立涛, 汤明杰. 不同磁路电子回旋共振离子源引出实验. 物理学报, 2016, 65(4): 045201. doi: 10.7498/aps.65.045201
    [5] 王洪广, 翟永贵, 李记肖, 李韵, 王瑞, 王新波, 崔万照, 李永东. 基于频域电磁场的微波器件微放电阈值快速粒子模拟. 物理学报, 2016, 65(23): 237901. doi: 10.7498/aps.65.237901
    [6] 孙振月, 桑超峰, 胡万鹏, 王德真. 偏滤器等离子体中杂质对钨壁材料的侵蚀模拟研究. 物理学报, 2014, 63(14): 145204. doi: 10.7498/aps.63.145204
    [7] 陈兆权, 殷志祥, 陈明功, 刘明海, 徐公林, 胡业林, 夏广庆, 宋晓, 贾晓芬, 胡希伟. 负偏压离子鞘及气体压强影响表面波放电过程的粒子模拟. 物理学报, 2014, 63(9): 095205. doi: 10.7498/aps.63.095205
    [8] 董烨, 董志伟, 周前红, 杨温渊, 周海京. 沿面闪络流体模型电离参数粒子模拟确定方法. 物理学报, 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [9] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真. 物理学报, 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [10] 董烨, 董志伟, 杨温渊, 周前红, 周海京. 介质窗横向电磁场分布下的次级电子倍增效应. 物理学报, 2013, 62(19): 197901. doi: 10.7498/aps.62.197901
    [11] 刘雷, 李永东, 王瑞, 崔万照, 刘纯亮. 微波阶梯阻抗变换器低气压电晕放电粒子模拟. 物理学报, 2013, 62(2): 025201. doi: 10.7498/aps.62.025201
    [12] 陈兆权, 夏广庆, 刘明海, 郑晓亮, 胡业林, 李平, 徐公林, 洪伶俐, 沈昊宇, 胡希伟. 气体压强及表面等离激元影响表面波等离子体电离发展过程的粒子模拟. 物理学报, 2013, 62(19): 195204. doi: 10.7498/aps.62.195204
    [13] 卿绍伟, 鄂鹏, 段萍. 电子温度各向异性对霍尔推力器中等离子体与壁面相互作用的影响. 物理学报, 2012, 61(20): 205202. doi: 10.7498/aps.61.205202
    [14] 杨超, 刘大刚, 周俊, 廖臣, 彭凯, 刘盛纲. 一种新型径向三腔同轴虚阴极振荡器全三维粒子模拟研究. 物理学报, 2011, 60(8): 084102. doi: 10.7498/aps.60.084102
    [15] 金晓林, 黄桃, 廖平, 杨中海. 电子回旋共振放电中电子与微波互作用特性的粒子模拟和蒙特卡罗碰撞模拟. 物理学报, 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [16] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅰ)——物理模型与理论方法. 物理学报, 2006, 55(11): 5930-5934. doi: 10.7498/aps.55.5930
    [17] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅱ)——数值模拟与结果讨论. 物理学报, 2006, 55(11): 5935-5941. doi: 10.7498/aps.55.5935
    [18] 卓红斌, 胡庆丰, 刘 杰, 迟利华, 张文勇. 超短脉冲激光与稀薄等离子体相互作用的准静态粒子模拟研究. 物理学报, 2005, 54(1): 197-201. doi: 10.7498/aps.54.197
    [19] 盛政明, 张 杰, 余 玮. 强激光与等离子体相互作用中低频电磁场孤子波的产生及其捕获. 物理学报, 2003, 52(1): 125-134. doi: 10.7498/aps.52.125
    [20] 简广德, 董家齐. 环形等离子体中电子温度梯度不稳定性的粒子模拟. 物理学报, 2003, 52(7): 1656-1662. doi: 10.7498/aps.52.1656
计量
  • 文章访问数:  4365
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-09
  • 修回日期:  2020-12-01
  • 上网日期:  2021-03-25
  • 刊出日期:  2021-04-05

/

返回文章
返回