搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三方和四方相PbZr0.5Ti0.5O3 的结构稳定性和电子结构的第一性原理研究

邵庆生 刘士余 赵辉 余大书 曹茂盛

引用本文:
Citation:

三方和四方相PbZr0.5Ti0.5O3 的结构稳定性和电子结构的第一性原理研究

邵庆生, 刘士余, 赵辉, 余大书, 曹茂盛

First-principles study of structural stability and electronic properties of rhombohedral and tetragonal PbZr0.5Ti0.5O3

Shao Qing-Sheng, Liu Shi-Yu, Zhao Hui, Yu Da-Shu, Cao Mao-Sheng
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理超原胞方法和虚晶近似方法, 在局域密度近似和广义梯度近似下系统研究了三方相和四方相 PbZr0.5Ti0.5O3的能量稳定性、原子结构以及电子结构. 计算结果表明三方相的能量比四方相低, 说明三方相结构更加稳定, 并且发现利用广义梯度近似计算的结构参数与实验值符合得更好. 电子结构表明, 两种相的Ti/Zr的3d电子和O的2p电子间存在明显的轨道杂化, 并且Ti-O之间的作用比Zr-O作用更强;Pb的6s和5d电子与O的2s和2p电子也分别存在轨道杂化. 而三方相中Pb的5d电子与O的2s电子杂化比四方相更强, 进一步说明三方相比四方相结构更加稳定.
    The energetic stability, the structural and the electronic properties of rhombohedral and tetragonal PbZr0.5Ti0.5O3 are systematically investigated by the first-principles plane-wave pseudopotential and the virtual crystal approximation (VCA) based on the density functional theory, within the frameworks of local density approximation (LDA) and generalized gradient approximation (GGA). Our calculation results show that the total energy of the rhombohedral phase is lower than that of the tetragonal phase, which suggests that the rhombohedral structure is more energetically stable than the tetragonal one. Furthermore, the structural parameters calculated in the GGA are well consistent with experimental values. From the analysis of electronic structure, we can find the strong hybridization between Ti/Zr d and O 2p both in two phases. Furthermore the hybridization between Ti-O is stronger than that between Zr-O; there also exists the hybridization between Pb s, d and O 2s, 2p. Moreover, the hybridization between Pb 5d and O 2s in the rhombohedral phase is stronger than that in the tetragonal phase, which indicates that the rhombohedral phase is more stable than the tetragonal phase.
    • 基金项目: 国家自然科学基金(批准号: 11104203, 51132002, 51072024, 50972014), 辽宁省自然科学基金(批准号:20082192) 和天津师范大学引进人才基金(批准号:5RL100)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104203, 51132002, 51072024, 50972014), the Natural Science Foundation of Liaoning Province (Grant No. 20082192), and the Foundation of introduction of talent of Tianjin Normal University (Grant No. 5RL100).
    [1]

    Scott J F 1998 Ferroelectrics Review 1 1

    [2]

    Uchino K 1996 Piezoelectric Actuators and Ultrasonic Motors (Kluwer Academic Publishers, Boston)

    [3]

    Cohen R E 1992 Nature (London) 358 136

    [4]

    Al-Zein A, Fraysse G, Rouquete J, Papet P, Haines J, Hehlen B, Levelut C, Aquilanti G, Joly Y 2010 Phys. Rev. B 81 174110

    [5]

    Yokota H, Zhang N, Taylor A E, Thomas P A, Glazer A M 2009 Phys. Rev. B 80 104109

    [6]

    Schierholz R, Fuess H 2008 Phys. Rev. B 78 024118

    [7]

    Jaffe B, Cook W R, Jaffe H 1971 Piezoelectric Ceramics (Acadermic Press London)

    [8]

    Zhang D Q, Liu H T, Cao M S 2006 Journal of Functional Material 37 1213(in Chinese) [张德庆, 刘海涛, 曹茂盛 2006 功能材料 37 1213]

    [9]

    Wang D W, Jin H B, Yuan J,Wen B L, Zhao Q L, Zhang D Q, Cao M S 2010 Chin. Phys. Lett. 27 047701

    [10]

    Wang D W, Zhang D Q, Yuan J, Zhao Q L, Liu H M, Wang Z Y, Cao M S 2009 Chin. Phys. B 18 2596

    [11]

    Zhang D Q, Wang D W, Yuan J, Zhao Q L, Wang Z Y, Cao M S 2008 Chin. Phys. Lett. 25 4410

    [12]

    Duan Z X, Yuan J, Zhao Q L, Liu H M, Lin H B, Zhang W T, Cao M S 2008 Chin. Phys. Lett. 25 1472

    [13]

    Liu H M, Zhao Q L, Cao M S, Yuan J, Duan Z X, Qiu C J 2008 Chin. Phys. Lett. 25 4128

    [14]

    Lin H B, Cao M S, Yuan J,Wang D W, Zhao Q L,Wang F C 2008 Chin. Phys. B 17 4323

    [15]

    Meng X J, Cheng J G, Li B, Tang J, Ye H J, Guo S L, Zhu J H 2000 Acta Phys. Sin. 49 811(in Chinese) [孟祥建, 程建功, 李标, 唐军, 叶红娟, 郭少令, 褚君浩 2000 物理学报 49 811]

    [16]

    Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717

    [17]

    Milman V, Winkler B, White J A, Pickard C J, Payne M C, Akhmatskaya E V, Nobes R H 2000 Int. J. Quantum. Chem. 77 895

    [18]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [19]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048

    [20]

    Perdew J P, Wang Y 1986 Phys. Rev. B 33 8800

    [21]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [22]

    Nordheim L 1931 Ann. Phys. 9 607

    [23]

    Jirak Z, Kala T 1988 Ferroelectrics 82 79

    [24]

    Frantti J, Lappalainen J, Eriksson S, Lantto V, Nishio S, Kakihana M, Ivanov S, Rundlöf H 2000 Jpn. J. Appl. Phys. I 39 5697

    [25]

    Yoshihiro K, Shinobu A, Akikatsu S, Jimpei H, Eiji N, Masaki T, Makoto S 2001 Phys. Rev. Lett. 87 217061

  • [1]

    Scott J F 1998 Ferroelectrics Review 1 1

    [2]

    Uchino K 1996 Piezoelectric Actuators and Ultrasonic Motors (Kluwer Academic Publishers, Boston)

    [3]

    Cohen R E 1992 Nature (London) 358 136

    [4]

    Al-Zein A, Fraysse G, Rouquete J, Papet P, Haines J, Hehlen B, Levelut C, Aquilanti G, Joly Y 2010 Phys. Rev. B 81 174110

    [5]

    Yokota H, Zhang N, Taylor A E, Thomas P A, Glazer A M 2009 Phys. Rev. B 80 104109

    [6]

    Schierholz R, Fuess H 2008 Phys. Rev. B 78 024118

    [7]

    Jaffe B, Cook W R, Jaffe H 1971 Piezoelectric Ceramics (Acadermic Press London)

    [8]

    Zhang D Q, Liu H T, Cao M S 2006 Journal of Functional Material 37 1213(in Chinese) [张德庆, 刘海涛, 曹茂盛 2006 功能材料 37 1213]

    [9]

    Wang D W, Jin H B, Yuan J,Wen B L, Zhao Q L, Zhang D Q, Cao M S 2010 Chin. Phys. Lett. 27 047701

    [10]

    Wang D W, Zhang D Q, Yuan J, Zhao Q L, Liu H M, Wang Z Y, Cao M S 2009 Chin. Phys. B 18 2596

    [11]

    Zhang D Q, Wang D W, Yuan J, Zhao Q L, Wang Z Y, Cao M S 2008 Chin. Phys. Lett. 25 4410

    [12]

    Duan Z X, Yuan J, Zhao Q L, Liu H M, Lin H B, Zhang W T, Cao M S 2008 Chin. Phys. Lett. 25 1472

    [13]

    Liu H M, Zhao Q L, Cao M S, Yuan J, Duan Z X, Qiu C J 2008 Chin. Phys. Lett. 25 4128

    [14]

    Lin H B, Cao M S, Yuan J,Wang D W, Zhao Q L,Wang F C 2008 Chin. Phys. B 17 4323

    [15]

    Meng X J, Cheng J G, Li B, Tang J, Ye H J, Guo S L, Zhu J H 2000 Acta Phys. Sin. 49 811(in Chinese) [孟祥建, 程建功, 李标, 唐军, 叶红娟, 郭少令, 褚君浩 2000 物理学报 49 811]

    [16]

    Segall M D, Lindan P L D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717

    [17]

    Milman V, Winkler B, White J A, Pickard C J, Payne M C, Akhmatskaya E V, Nobes R H 2000 Int. J. Quantum. Chem. 77 895

    [18]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [19]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048

    [20]

    Perdew J P, Wang Y 1986 Phys. Rev. B 33 8800

    [21]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [22]

    Nordheim L 1931 Ann. Phys. 9 607

    [23]

    Jirak Z, Kala T 1988 Ferroelectrics 82 79

    [24]

    Frantti J, Lappalainen J, Eriksson S, Lantto V, Nishio S, Kakihana M, Ivanov S, Rundlöf H 2000 Jpn. J. Appl. Phys. I 39 5697

    [25]

    Yoshihiro K, Shinobu A, Akikatsu S, Jimpei H, Eiji N, Masaki T, Makoto S 2001 Phys. Rev. Lett. 87 217061

  • [1] 夏文强, 赵彦, 刘振智, 鲁晓刚. 应变诱发四方相小角度对称倾侧晶界位错反应的晶体相场模拟. 物理学报, 2022, 71(9): 096102. doi: 10.7498/aps.71.20212278
    [2] 朱振业. 无铅四方相钙钛矿短周期超晶格压电效应机理研究. 物理学报, 2018, 67(7): 077701. doi: 10.7498/aps.67.20172710
    [3] 袁野, 田博博, 段纯刚. 四方相多铁BiMnO3电控磁性的理论研究. 物理学报, 2018, 67(15): 157511. doi: 10.7498/aps.67.20180946
    [4] 朱彦旭, 宋会会, 王岳华, 李赉龙, 石栋. 氮化镓基感光栅极高电子迁移率晶体管器件设计与制备. 物理学报, 2017, 66(24): 247203. doi: 10.7498/aps.66.247203
    [5] 孙启响, 闫冰. CH3I2+的二体、三体解离过程的理论研究. 物理学报, 2017, 66(9): 093101. doi: 10.7498/aps.66.093101
    [6] 杨明宇, 杨倩, 张勃, 张旭, 蔡颂, 薛玉龙, 周铁戈. 5d过渡金属原子掺杂六方氮化铝单层的磁性及自旋轨道耦合效应:可能存在的二维长程磁有序. 物理学报, 2017, 66(6): 063102. doi: 10.7498/aps.66.063102
    [7] 鲁桃, 王瑾, 付旭, 徐彪, 叶飞宏, 冒进斌, 陆云清, 许吉. 采用密度泛函理论与分子动力学对聚甲基丙烯酸甲酯双折射性的理论计算. 物理学报, 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [8] 朱洪强, 冯庆. 光学气敏材料金红石相二氧化钛(110)面吸附CO分子的微观特性机理研究. 物理学报, 2014, 63(13): 133101. doi: 10.7498/aps.63.133101
    [9] 余本海, 陈东. 用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变. 物理学报, 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [10] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算. 物理学报, 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [11] 马丽莎, 张前程, 程琳. Zn吸附到含有氧空位(VO)以及羟基(-OH)的锐钛矿相TiO2(101)表面电子结构的第一性原理计算. 物理学报, 2013, 62(18): 187101. doi: 10.7498/aps.62.187101
    [12] 刘士余, 余大书, 吕跃凯, 李德军, 曹茂盛. 四方和正交以及单斜相K0.5Na0.5NbO3的结构稳定性和电子结构的第一性原理研究. 物理学报, 2013, 62(17): 177102. doi: 10.7498/aps.62.177102
    [13] 郑树文, 范广涵, 李述体, 张涛, 苏晨. Be1-xMgxO合金的能带特性与相结构稳定性研究. 物理学报, 2012, 61(23): 237101. doi: 10.7498/aps.61.237101
    [14] 濮春英, 唐鑫, 吕海峰, 张庆瑜. 掺Cd氧化锌的电子结构及相结构稳定性的第一性原理研究. 物理学报, 2011, 60(3): 037101. doi: 10.7498/aps.60.037101
    [15] 邢海英, 范广涵, 杨学林, 张国义. 金属有机化学气相淀积技术制备GaMnN薄膜材料光学性质研究. 物理学报, 2010, 59(1): 504-507. doi: 10.7498/aps.59.504
    [16] 赵晓英, 刘世建, 褚君浩, 戴 宁, 胡古今. 锆钛酸铅双层膜的铁电及光学特性研究. 物理学报, 2008, 57(9): 5968-5972. doi: 10.7498/aps.57.5968
    [17] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究. 物理学报, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [18] 叶贞成, 蔡 钧, 张书令, 刘洪来, 胡 英. 方阱链流体在固液界面分布的密度泛函理论研究. 物理学报, 2005, 54(9): 4044-4052. doi: 10.7498/aps.54.4044
    [19] 张端明, 严文生, 钟志成, 杨凤霞, 郑克玉, 李智华. PZT四方相区介电常数εr与晶格畸变关系的研究. 物理学报, 2004, 53(5): 1316-1320. doi: 10.7498/aps.53.1316
    [20] 王渊旭, 钟维烈, 王春雷, 张沛霖. 四方铁电体PbFe0.5Nb0.5O3精细结构的第一性原理研究. 物理学报, 2002, 51(1): 171-173. doi: 10.7498/aps.51.171
计量
  • 文章访问数:  7840
  • PDF下载量:  462
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-22
  • 修回日期:  2011-03-29
  • 刊出日期:  2012-02-05

/

返回文章
返回