搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔脆性介质冲击波压缩破坏的细观机理和图像

喻寅 王文强 杨佳 张友君 蒋冬冬 贺红亮

引用本文:
Citation:

多孔脆性介质冲击波压缩破坏的细观机理和图像

喻寅, 王文强, 杨佳, 张友君, 蒋冬冬, 贺红亮

Mesoscopic picture of fracture in porous brittle material under shock wave compression

Yu Yin, Wang Wen-Qiang, Yang Jia, Zhang You-Jun, Jiang Dong-Dong, He Hong-Liang
PDF
导出引用
  • 本文采用一种具有良好定量性质的离散元模型研究了带孔洞的各向同性脆性介质在细观尺度上的压缩破坏特征. 通过对孤立孔洞、三种简单的孔洞排布方式和大量孔洞随机排布等几种情况的模拟, 认识到了剪切破坏和局域拉伸破坏是冲击波压缩下多孔介质的基本破坏模式; 孔洞之间的损伤贯通会促进孔洞在较低应力下发生塌缩, 但损伤区的应力松弛过程却会对一定范围内的介质起到损伤屏蔽作用; 不同区域中损伤促进和损伤屏蔽的综合效果是在多孔脆性介质中形成一种高损伤区与低损伤区间错排布的奇特损伤分布. 本文的研究结果为深入理解脆性材料冲击波压缩破坏的演化过程和机理提供了细观尺度上的初步物理图像.
    Void is one of the most common type of structure flaws existing in brittle materials, which dramatically affects the shock loading response of brittle materials. A quantitative discrete element method is employed in this work to study the fracture characteristics of porous isotropic brittle material under shock wave compression. Scenarios of isolated void, three types of simple distribution and random distribution of voids are computed, from which we find that shear fracture and local tensile fracture are two type of basic fracture modes for brittle material under shock wave compression. Coalescence of damage bands between voids can induce the collapse of voids at relatively low pressure, while stress relaxation caused by damage can shield fracture evolution in a certain zone. The combination of amplification and shielding effects of damage results in a unique pattern of alternate distribution of severe and mild damage zones. These simulation results present a basic physics picture for the understanding of evolution process and mechanism of fracture in porous brittle material under shock wave compression.
    • 基金项目: 中国工程物理研究院科学技术发展基金 (批准号:2010A0201005)和冲击波物理与爆轰物理国防科技重点实验室基金(批准号:9140C6711021007)资助的课题.
    • Funds: Project supported by the Science Foundation of China Academy of Engineering Physics , China (Grant No. 2010A0201005), and the Science and Technology Foundation of State Key Laboratory of Shock Wave and Detonation Physics (Grant No. 9140C6711021007).
    [1]

    Rasorenov S V, Kanel G I, Fortov V E 1991 High Pressure Research 6 225

    [2]

    Bourne N K, Rosenberg Z, Field J E 1995 J. Appl. Phys. 78 3736

    [3]

    Grady D E 1980 J. Geophys. Research 85 913

    [4]

    Jeanloz R 1980 J. Geophys. Research 85 3161

    [5]

    Graham R A (Translated by He H L) 2010 Solids Under High- Pressure Shock Compression (Beijing: Science Press) p79 (in Chinese) [格拉汉姆 R. A. 著 贺红亮译 2010 固体的冲击波压缩 (北京:科学出版社) 第79页]

    [6]

    Weir S T, Mitchell A C, Nellis W J 1996 J. Appl. Phys. 80 1522

    [7]

    Mashimo T, Kondo K I, Sawaoka A 1980 J. Geophys. Res. 85 1876

    [8]

    Zhang F P, Du J M, Liu Y S, Liu Y, Liu G M, He H L 2011 Acta Phys. Sin. 60 057701 (in Chinese) [张福平, 杜金梅, 刘雨生, 刘艺, 刘高旻, 贺红亮 2011 物理学报 60 057701]

    [9]

    Setchell R E 2003 J. Appl. Phys. 94 573

    [10]

    Setchell R E 2005 J. Appl. Phys. 97 3507

    [11]

    Setchell R E 2007 J. Appl. Phys. 101 053525

    [12]

    Gusev A A 2004 Phys. Rev. Lett. 93 034302

    [13]

    Yu Y, He H L, Wang W Q 2011 Proceedings of China mechanics - 2011 Haerbing, China, August 22-24, 2011 p144 (in Chinese) [喻寅, 贺红亮, 王文强 2011 中国力学大会-2011 哈尔滨 8月22--24日 2011年] 第144页

    [14]

    Chen Y, Huang T F 2001 Rock Physics (Beijing: Beijing University Press) p80 (in Chinese) [陈颙, 黄庭芳 2001 岩石物理学 (北京:北京大学出版社) 第80页]

    [15]

    Wada T, Inoue A, Greer A L 2005 Appl. Phys. Lett. 86 251907

    [16]

    Wang Y C, Mora P 2008 Pure Appl. Geophys. 165 609

    [17]

    Deng X L, Zhu W J, Song Z F, He H L, Jing F Q 2009 Acta Phys. Sin. 58 4772 (in Chinese) [邓小良, 祝文军, 宋振飞, 贺红亮, 经福谦 2009 物理学报 58 4772]

    [18]

    Belytschko T 2007 Int. J. Fract. 145 1

  • [1]

    Rasorenov S V, Kanel G I, Fortov V E 1991 High Pressure Research 6 225

    [2]

    Bourne N K, Rosenberg Z, Field J E 1995 J. Appl. Phys. 78 3736

    [3]

    Grady D E 1980 J. Geophys. Research 85 913

    [4]

    Jeanloz R 1980 J. Geophys. Research 85 3161

    [5]

    Graham R A (Translated by He H L) 2010 Solids Under High- Pressure Shock Compression (Beijing: Science Press) p79 (in Chinese) [格拉汉姆 R. A. 著 贺红亮译 2010 固体的冲击波压缩 (北京:科学出版社) 第79页]

    [6]

    Weir S T, Mitchell A C, Nellis W J 1996 J. Appl. Phys. 80 1522

    [7]

    Mashimo T, Kondo K I, Sawaoka A 1980 J. Geophys. Res. 85 1876

    [8]

    Zhang F P, Du J M, Liu Y S, Liu Y, Liu G M, He H L 2011 Acta Phys. Sin. 60 057701 (in Chinese) [张福平, 杜金梅, 刘雨生, 刘艺, 刘高旻, 贺红亮 2011 物理学报 60 057701]

    [9]

    Setchell R E 2003 J. Appl. Phys. 94 573

    [10]

    Setchell R E 2005 J. Appl. Phys. 97 3507

    [11]

    Setchell R E 2007 J. Appl. Phys. 101 053525

    [12]

    Gusev A A 2004 Phys. Rev. Lett. 93 034302

    [13]

    Yu Y, He H L, Wang W Q 2011 Proceedings of China mechanics - 2011 Haerbing, China, August 22-24, 2011 p144 (in Chinese) [喻寅, 贺红亮, 王文强 2011 中国力学大会-2011 哈尔滨 8月22--24日 2011年] 第144页

    [14]

    Chen Y, Huang T F 2001 Rock Physics (Beijing: Beijing University Press) p80 (in Chinese) [陈颙, 黄庭芳 2001 岩石物理学 (北京:北京大学出版社) 第80页]

    [15]

    Wada T, Inoue A, Greer A L 2005 Appl. Phys. Lett. 86 251907

    [16]

    Wang Y C, Mora P 2008 Pure Appl. Geophys. 165 609

    [17]

    Deng X L, Zhu W J, Song Z F, He H L, Jing F Q 2009 Acta Phys. Sin. 58 4772 (in Chinese) [邓小良, 祝文军, 宋振飞, 贺红亮, 经福谦 2009 物理学报 58 4772]

    [18]

    Belytschko T 2007 Int. J. Fract. 145 1

  • [1] 王金玲, 张昆, 林机, 李慧军. 二维激子-极化子凝聚体中冲击波的产生与调控. 物理学报, 2024, 73(11): 119601. doi: 10.7498/aps.73.20240229
    [2] 贾瑞煜, 方乒乒, 高超, 林机. 玻色-爱因斯坦凝聚体中的淬火孤子与冲击波. 物理学报, 2021, 70(18): 180303. doi: 10.7498/aps.70.20210564
    [3] 王小峰, 陶钢, 徐宁, 王鹏, 李召, 闻鹏. 冲击波诱导水中纳米气泡塌陷的分子动力学分析. 物理学报, 2021, 70(13): 134702. doi: 10.7498/aps.70.20210058
    [4] 刘强, 郭巧能, 钱相飞, 王海宁, 郭睿林, 肖志杰, 裴海蛟. 循环载荷下纳米铜/铝薄膜孔洞形核、生长及闭合的分子动力学模拟. 物理学报, 2019, 68(13): 133101. doi: 10.7498/aps.68.20181901
    [5] 伍友成, 刘高旻, 戴文峰, 高志鹏, 贺红亮, 郝世荣, 邓建军. 冲击波作用下Pb(Zr0.95Ti0.05)O3铁电陶瓷去极化后电阻率动态特性. 物理学报, 2017, 66(4): 047201. doi: 10.7498/aps.66.047201
    [6] 王峰, 彭晓世, 薛全喜, 徐涛, 魏惠月. 基于神光III原型的整形激光直接驱动准等熵压缩实验研究. 物理学报, 2015, 64(8): 085202. doi: 10.7498/aps.64.085202
    [7] 王峰, 彭晓世, 单连强, 李牧, 薛全喜, 徐涛, 魏惠月. 基于神光Ⅲ原型装置的激光加载条件下准等熵压缩实验研究进展. 物理学报, 2014, 63(18): 185202. doi: 10.7498/aps.63.185202
    [8] 王峰, 彭晓世, 梅鲁生, 刘慎业, 蒋小华, 丁永坤. 基于速度干涉仪的冲击波精密调速实验技术研究. 物理学报, 2012, 61(13): 135201. doi: 10.7498/aps.61.135201
    [9] 王峰, 彭晓世, 刘慎业, 李永升, 蒋小华, 丁永坤. 超高压下冲击波速度直接测量技术. 物理学报, 2011, 60(2): 025202. doi: 10.7498/aps.60.025202
    [10] 王峰, 彭晓世, 刘慎业, 蒋小华, 徐涛, 丁永坤, 张保汉. 三明治靶型在间接驱动冲击波实验中的应用. 物理学报, 2011, 60(11): 115203. doi: 10.7498/aps.60.115203
    [11] 冯宁博, 谷岩, 刘雨生, 聂恒昌, 陈学锋, 王根水, 贺红亮, 董显林. 冲击波加载下孔隙率对Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 铁电陶瓷去极化性能的影响. 物理学报, 2010, 59(12): 8897-8902. doi: 10.7498/aps.59.8897
    [12] 王海燕, 祝文军, 邓小良, 宋振飞, 陈向荣. 冲击加载下铝中氦泡和孔洞的塑性变形特征研究. 物理学报, 2009, 58(2): 1154-1160. doi: 10.7498/aps.58.1154
    [13] 蒋冬冬, 杜金梅, 谷 岩, 冯玉军. 冲击波加载下PZT 95/5铁电陶瓷的电阻率研究. 物理学报, 2008, 57(1): 566-570. doi: 10.7498/aps.57.566
    [14] 俞宇颖, 谭 华, 胡建波, 戴诚达, 陈大年, 王焕然. 冲击波作用下铝的等效剪切模量. 物理学报, 2008, 57(4): 2352-2357. doi: 10.7498/aps.57.2352
    [15] 邵建立, 王 裴, 秦承森, 周洪强. 冲击加载下孔洞诱导相变形核分析. 物理学报, 2008, 57(2): 1254-1258. doi: 10.7498/aps.57.1254
    [16] 陈登平, 贺红亮, 黎明发, 经福谦. 冲击压缩下非均质脆性固体的弛豫破坏研究. 物理学报, 2007, 56(1): 423-428. doi: 10.7498/aps.56.423
    [17] 崔新林, 祝文军, 邓小良, 李英骏, 贺红亮. 冲击波压缩下含纳米孔洞单晶铁的结构相变研究. 物理学报, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [18] 江少恩, 李文洪, 孙可煦, 蒋小华, 刘永刚, 崔延莉, 陈久森, 丁永坤, 郑志坚. 神光Ⅱ上柱形黑腔辐射驱动冲击波. 物理学报, 2004, 53(10): 3424-3428. doi: 10.7498/aps.53.3424
    [19] 傅思祖, 黄秀光, 吴 江, 王瑞荣, 马民勋, 何钜华, 叶君健, 顾 援. 斜入射激光驱动的冲击波在样品中传播特性的实验研究. 物理学报, 2003, 52(8): 1877-1881. doi: 10.7498/aps.52.1877
    [20] 张杰, 王薇. 冲击波在铝靶中传播的数值模拟研究. 物理学报, 2001, 50(4): 741-747. doi: 10.7498/aps.50.741
计量
  • 文章访问数:  7464
  • PDF下载量:  617
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-12
  • 修回日期:  2011-08-14
  • 刊出日期:  2012-02-05

/

返回文章
返回