搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类高聚类系数的加权无标度网络及其同步能力分析

王丹 郝彬彬

引用本文:
Citation:

一类高聚类系数的加权无标度网络及其同步能力分析

王丹, 郝彬彬

A weighted scale-free network model with high clustering and its synchronizability

Wang Dan, Hao Bin-Bin
PDF
导出引用
  • 针对真实世界中大规模网络都具有明显聚类效应的特点, 提出一类具有高聚类系数的加权无标度网络演化模型, 该模型同时考虑了优先连接、三角结构、随机连接和社团结构等四种演化机制. 在模型演化规则中, 以概率p增加单个节点, 以概率1–p增加一个社团. 与以往研究的不同在于新边的建立, 以概率φ在旧节点之间进行三角连接, 以概率1–φ进行随机连接. 仿真分析表明, 所提出的网络度、强度和权值分布都是服从幂律分布的形式, 且具有高聚类系数的特性, 聚类系数的提高与社团结构和随机连接机制有直接的关系. 最后通过数值仿真分析了网络演化机制对同步动态特性的影响, 数值仿真结果表明, 网络的平均聚类系数越小, 网络的同步能力越强.
    The detecting of clusters or communities in large real-world networks such as large social or information networks is of considerable significance. We propose a new weighted evolving model of high clustering scale-free network incorporating a community structure mechanism, which means the addition of the new node depends on not only a single node but also a community. In the process of the evolution, a new node with probability p and a new community with the probability 1–p are added to the network. Different from the existing studies where new links are additionally established, some links with probability φ according to the triad formation mechanism and other links with the probability 1–φ according to the random selection mechanism are connected between neighbors in the model. The topology and weights of links of the network evolve as time goes on. Moreover, the evolving model gives power-law distributions of degree, weight, and strength as confirmed in several real world systems. Especially, the average clustering coefficient exhibits power-law decay as a function of degree of node. Both the community structure and the triad formation can enhance the average clustering coefficient of scale-free networks. Furthermore, we investigate how the synchronization of the network is influenced by the evolution mechanism of the network. Numerical simulation results show that the network synchronizability is optimized when the average clustering coefficient decreases in the model.
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 61203152)和辽宁省博士科研启动基金(批准号: 20121040)资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61203152) and the Scientific Research Foundation for Doctor of Liaoning Province of China (Grant No. 20121040)
    [1]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [2]

    Barabási A L, Albert R 1999 Science 286 509

    [3]

    Zhao M, Zhou T, Chen G R, Wang B H 2008 Prog. Phys. 28 22 (in Chinese) [赵明, 周涛, 陈关荣, 汪秉宏 2008 物理学进展 28 22]

    [4]

    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U 2006 Phys. Rep. 424 175

    [5]

    Yao H X, Wang S G 2012 Chin. Phys. B 21 110506

    [6]

    Liu Z R, Li Y, Zhang J B 2008 Chin. Phys. Lett. 25 874

    [7]

    Fan J, Wang X F 2005 Physica A 349 443

    [8]

    Wang X F, Chen G R 2002 Int. J. Bifurcat. Chaos 12 187

    [9]

    Barahona M, Pecora L M 2002 Phys. Rev. Lett. 89 054101

    [10]

    Wang X F, Chen G R 2002 IEEE Trans. Circuits Syst. I 49 54

    [11]

    Yook S H, Jeong H, Barabási A L, Tu Y 2001 Phys. Rev. Lett. 86 5835

    [12]

    Zheng D F, Trimper S, Zheng B, Hui P M 2003 Phys. Rev. E 67 040102

    [13]

    Wang S J, Zhang C H 2004 Phys. Rev. E 70 066127

    [14]

    Barrat A, Barthelemy M, Vespignani A 2004 Phys. Rev. Lett. 92 228701

    [15]

    Ou Q, Jin Y D, Zhou T, Wang B H, Yin B Q 2007 Phys. Rev. E 75 021102

    [16]

    Wang W X, Hu B, Zhou T, Wang B H, Xie Y B 2005 Phys. Rev. E 72 046140

    [17]

    Xie Y B, Wang W X, Wang B H 2007 Phys. Rev. E 75 026111

    [18]

    Wang W X, Hu B, Wang B H, Yan G 2006 Phys. Rev. E 73 016133

    [19]

    Wang D, Jin X Z 2012 Acta Phys. Sin. 61 228901 (in Chinese) [王丹, 金小峥 2012 物理学报 61 228901]

    [20]

    Jing Y W, Hao B B, Zhang S Y 2009 Comp. Sysm. Comp. Sci. 6 87 (in Chinese) [井元伟, 郝彬彬, 张嗣瀛 2009 复杂系统与复杂性科学 6 87]

    [21]

    Newman M E J 2003 SIAM Rev. 45 167

    [22]

    Wang D, Jing Y W, Hao B B 2012 Acta Phys. Sin. 61 220511 (in Chinese) [王丹, 井元伟, 郝彬彬 2012 物理学报 61 220511]

    [23]

    Wang D, Jing Y W, Hao B B 2012 Acta Phys. Sin. 61 170513 (in Chinese) [王丹, 井元伟, 郝彬彬 2012 物理学报 61 170513]

    [24]

    Kocarev L, Amato P 2005 Chaos 15 024101

  • [1]

    Watts D J, Strogatz S H 1998 Nature 393 440

    [2]

    Barabási A L, Albert R 1999 Science 286 509

    [3]

    Zhao M, Zhou T, Chen G R, Wang B H 2008 Prog. Phys. 28 22 (in Chinese) [赵明, 周涛, 陈关荣, 汪秉宏 2008 物理学进展 28 22]

    [4]

    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U 2006 Phys. Rep. 424 175

    [5]

    Yao H X, Wang S G 2012 Chin. Phys. B 21 110506

    [6]

    Liu Z R, Li Y, Zhang J B 2008 Chin. Phys. Lett. 25 874

    [7]

    Fan J, Wang X F 2005 Physica A 349 443

    [8]

    Wang X F, Chen G R 2002 Int. J. Bifurcat. Chaos 12 187

    [9]

    Barahona M, Pecora L M 2002 Phys. Rev. Lett. 89 054101

    [10]

    Wang X F, Chen G R 2002 IEEE Trans. Circuits Syst. I 49 54

    [11]

    Yook S H, Jeong H, Barabási A L, Tu Y 2001 Phys. Rev. Lett. 86 5835

    [12]

    Zheng D F, Trimper S, Zheng B, Hui P M 2003 Phys. Rev. E 67 040102

    [13]

    Wang S J, Zhang C H 2004 Phys. Rev. E 70 066127

    [14]

    Barrat A, Barthelemy M, Vespignani A 2004 Phys. Rev. Lett. 92 228701

    [15]

    Ou Q, Jin Y D, Zhou T, Wang B H, Yin B Q 2007 Phys. Rev. E 75 021102

    [16]

    Wang W X, Hu B, Zhou T, Wang B H, Xie Y B 2005 Phys. Rev. E 72 046140

    [17]

    Xie Y B, Wang W X, Wang B H 2007 Phys. Rev. E 75 026111

    [18]

    Wang W X, Hu B, Wang B H, Yan G 2006 Phys. Rev. E 73 016133

    [19]

    Wang D, Jin X Z 2012 Acta Phys. Sin. 61 228901 (in Chinese) [王丹, 金小峥 2012 物理学报 61 228901]

    [20]

    Jing Y W, Hao B B, Zhang S Y 2009 Comp. Sysm. Comp. Sci. 6 87 (in Chinese) [井元伟, 郝彬彬, 张嗣瀛 2009 复杂系统与复杂性科学 6 87]

    [21]

    Newman M E J 2003 SIAM Rev. 45 167

    [22]

    Wang D, Jing Y W, Hao B B 2012 Acta Phys. Sin. 61 220511 (in Chinese) [王丹, 井元伟, 郝彬彬 2012 物理学报 61 220511]

    [23]

    Wang D, Jing Y W, Hao B B 2012 Acta Phys. Sin. 61 170513 (in Chinese) [王丹, 井元伟, 郝彬彬 2012 物理学报 61 170513]

    [24]

    Kocarev L, Amato P 2005 Chaos 15 024101

计量
  • 文章访问数:  2946
  • PDF下载量:  584
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-17
  • 修回日期:  2013-08-15
  • 刊出日期:  2013-11-05

一类高聚类系数的加权无标度网络及其同步能力分析

  • 1. 沈阳大学, 装备制造综合自动化重点实验室, 沈阳 110044
    基金项目: 国家自然科学基金青年科学基金(批准号: 61203152)和辽宁省博士科研启动基金(批准号: 20121040)资助的课题.

摘要: 针对真实世界中大规模网络都具有明显聚类效应的特点, 提出一类具有高聚类系数的加权无标度网络演化模型, 该模型同时考虑了优先连接、三角结构、随机连接和社团结构等四种演化机制. 在模型演化规则中, 以概率p增加单个节点, 以概率1–p增加一个社团. 与以往研究的不同在于新边的建立, 以概率φ在旧节点之间进行三角连接, 以概率1–φ进行随机连接. 仿真分析表明, 所提出的网络度、强度和权值分布都是服从幂律分布的形式, 且具有高聚类系数的特性, 聚类系数的提高与社团结构和随机连接机制有直接的关系. 最后通过数值仿真分析了网络演化机制对同步动态特性的影响, 数值仿真结果表明, 网络的平均聚类系数越小, 网络的同步能力越强.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回