搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超冷铯分子纯长程态转动常数的精密测量

马杰 陈鹏 刘文良 冯国胜 李玉清 武寄洲 肖连团 贾锁堂

引用本文:
Citation:

超冷铯分子纯长程态转动常数的精密测量

马杰, 陈鹏, 刘文良, 冯国胜, 李玉清, 武寄洲, 肖连团, 贾锁堂

Precise measurements of rotational constants of the pure long range state of ultracold cesium molecules

Ma Jie, Chen Peng, Liu Wen-Liang, Feng Guo-Sheng, Li Yu-Qing, Wu Ji-Zhou, Xiao Lian-Tuan, Jia Suo-Tang
PDF
导出引用
  • 利用调制的俘获损耗光谱技术实验测量了超冷铯分子纯长程0g-态的高分辨光谱. 采用双光缔合光谱技术构建了精确的频率差参考信号, 对转动能级的共振频率间隔进行了精确的标定, 获得了转动能级频率间隔与转动量子数的关系. 通过将实验数据拟合到非刚性转动模型, 获得了超冷铯分子纯长程0g-态不同振动态的转动常数. 实验结果表明转动常数随振动量子数的增加而线性减小, 线性递减率为-0.41 MHz0.01 MHz.
    The high resolution spectrum of ultracold Cs2 pure long range 0g- state is experimentally measured using modulated trap loss spectroscopic technology. Based on Double photoassociation spectroscopic technique, precise frequency difference reference signals are constructed to accurately calibrate the resonant frequency intervals of the ro-vibrational levels, thus obtaining the relationship between the frequency interval of rotational level and the rotational quantum number. The experimental data are fitted by the non-rigid rotational model, and the molecular rotational constants corresponding to different vibrational levels in the ultracold Cs2 pure long range 0g- state are acquired. The experimental results demonstrate a linear decrease of the rotational constant with the increase of vibrational quantum number, and the linear decreasing rate is -0.41m MHz0.01 MHz.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB921603)、国家自然科学基金(批准号: 61008012,10934004)、国家高技术研究发展计划(批准号: 2011AA010801)、国家自然科学基金国际(地区)合作与交流项目(批准号: 2011DFA12490)、教育部新教师基金(批准号: 20101401120004)和山西省青年科技研究基金(批准号: 2013021005-1)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB921603), the National Natural Science Foundation of China (Grant Nos. 61008012, 10934004), the National High Technology Research and Development Program of China (Grant No. 2011AA010801), the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (Grant No. 2011DFA12490), the New Teacher Fund of the Ministry of Education of China (Grant No. 20101401120004), and the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 2013021005-1).
    [1]

    Carr L D, DeMille D, Krems R V, Ye J 2009 New J. Phys. 11 055049

    [2]

    DeMille D 2002 Phys. Rev. Lett. 88 067901

    [3]

    Blume D 2012 Rep. Prog. Phys. 75 046401

    [4]

    Yuan J P, Ji Z H, Yang Y, Zhang H S, Zhao Y T, Ma J, Wang L R, Xiao L T, Jia S T 2012 Acta Phys. Sin. 61 183301 (in Chinese) [元晋鹏, 姬中华, 杨艳, 张洪山, 赵延霆, 马杰, 汪丽蓉, 肖连团, 贾锁堂 2012 物理学报 61 183301]

    [5]

    Wang L R, Ma J, Zhang L J, Xiao L T, Jia S T 2007 Acta Phys. Sin. 56 6373 (in Chinese) [汪丽蓉, 马杰, 张临杰, 肖连团, 贾锁堂 2007 物理学报 56 6373]

    [6]

    Xie T, Wang G R, Zhang W, Huang Y, Cong S L 2012 Phys. Rev. A 86 032713

    [7]

    Zhang W, Huang Y, Xie T, Wang G R, Cong S L 2010 Phys. Rev. A 82 063411

    [8]

    Zhang Y C, Wu J Z, Ma J, Zhao Y T, Wang L R, Xiao L T, Jia S T 2010 Acta Phys. Sin. 59 5418 (in Chinese) [张一驰, 武寄洲, 马杰, 赵延霆, 汪丽蓉, 肖连团, 贾锁堂 2010 物理学报 59 5418]

    [9]

    Stwalley W C, Uang Y, Pichler G 1978 Phys. Rev. Lett. 41 1164

    [10]

    Ma J, Wang L R, Zhao Y T, Xiao L T, Jia S T 2007 Appl. Phys. Lett. 91 161101

    [11]

    Fioretti A, Comparat D, Drag C, Amiot C, Dulieu O, Masnou-Seeuws F, Pillet P 1999 Eur. Phys. J. D 5 389

    [12]

    Pichler M, Chen H M, Stwalley W C 2004 J. Chem. Phys. 121 6779

    [13]

    Zhang Y C, Ma J, Wu J Z, Wang L R, Xiao L T, Jia S T 2013 Phys. Rev. A 87 030503(R)

    [14]

    Ma J, Wu J Z, Zhao Y T, Xiao L T, Jia S T 2010 Opt. Express 18 17089

    [15]

    Wu J Z, Ma J, Ji Z H, Zhang Y C, Li Y Q, Wang L R, Zhao Y T, Xiao L T, Jia S T 2012 Chin. Phys. B 21 093701

    [16]

    Thorsheim H R, Weiner J, Julienne P S 1987 Phys. Rev. Lett. 58 2420

    [17]

    Wu J Z, Ma J, Zhang Y C, Li Y Q, Wang L R, Zhao Y T, Chen G, Xiao L T, Jia S T 2011 Phys. Chem. Chem. Phys. 13 18921

    [18]

    Zhang Y C, Ma J, Li Y Q, Wu J Z, Zhang L J, Chen G, Wang L R, Zhao Y T, Xiao L T, Jia S T 2012 Appl. Phys. Lett. 101 131114

    [19]

    Bransden B H, Joachain C J 1983 Physics of Atoms and Molecules (Essex: Longman Publishing Group)

  • [1]

    Carr L D, DeMille D, Krems R V, Ye J 2009 New J. Phys. 11 055049

    [2]

    DeMille D 2002 Phys. Rev. Lett. 88 067901

    [3]

    Blume D 2012 Rep. Prog. Phys. 75 046401

    [4]

    Yuan J P, Ji Z H, Yang Y, Zhang H S, Zhao Y T, Ma J, Wang L R, Xiao L T, Jia S T 2012 Acta Phys. Sin. 61 183301 (in Chinese) [元晋鹏, 姬中华, 杨艳, 张洪山, 赵延霆, 马杰, 汪丽蓉, 肖连团, 贾锁堂 2012 物理学报 61 183301]

    [5]

    Wang L R, Ma J, Zhang L J, Xiao L T, Jia S T 2007 Acta Phys. Sin. 56 6373 (in Chinese) [汪丽蓉, 马杰, 张临杰, 肖连团, 贾锁堂 2007 物理学报 56 6373]

    [6]

    Xie T, Wang G R, Zhang W, Huang Y, Cong S L 2012 Phys. Rev. A 86 032713

    [7]

    Zhang W, Huang Y, Xie T, Wang G R, Cong S L 2010 Phys. Rev. A 82 063411

    [8]

    Zhang Y C, Wu J Z, Ma J, Zhao Y T, Wang L R, Xiao L T, Jia S T 2010 Acta Phys. Sin. 59 5418 (in Chinese) [张一驰, 武寄洲, 马杰, 赵延霆, 汪丽蓉, 肖连团, 贾锁堂 2010 物理学报 59 5418]

    [9]

    Stwalley W C, Uang Y, Pichler G 1978 Phys. Rev. Lett. 41 1164

    [10]

    Ma J, Wang L R, Zhao Y T, Xiao L T, Jia S T 2007 Appl. Phys. Lett. 91 161101

    [11]

    Fioretti A, Comparat D, Drag C, Amiot C, Dulieu O, Masnou-Seeuws F, Pillet P 1999 Eur. Phys. J. D 5 389

    [12]

    Pichler M, Chen H M, Stwalley W C 2004 J. Chem. Phys. 121 6779

    [13]

    Zhang Y C, Ma J, Wu J Z, Wang L R, Xiao L T, Jia S T 2013 Phys. Rev. A 87 030503(R)

    [14]

    Ma J, Wu J Z, Zhao Y T, Xiao L T, Jia S T 2010 Opt. Express 18 17089

    [15]

    Wu J Z, Ma J, Ji Z H, Zhang Y C, Li Y Q, Wang L R, Zhao Y T, Xiao L T, Jia S T 2012 Chin. Phys. B 21 093701

    [16]

    Thorsheim H R, Weiner J, Julienne P S 1987 Phys. Rev. Lett. 58 2420

    [17]

    Wu J Z, Ma J, Zhang Y C, Li Y Q, Wang L R, Zhao Y T, Chen G, Xiao L T, Jia S T 2011 Phys. Chem. Chem. Phys. 13 18921

    [18]

    Zhang Y C, Ma J, Li Y Q, Wu J Z, Zhang L J, Chen G, Wang L R, Zhao Y T, Xiao L T, Jia S T 2012 Appl. Phys. Lett. 101 131114

    [19]

    Bransden B H, Joachain C J 1983 Physics of Atoms and Molecules (Essex: Longman Publishing Group)

计量
  • 文章访问数:  2773
  • PDF下载量:  540
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-16
  • 修回日期:  2013-08-21
  • 刊出日期:  2013-11-05

超冷铯分子纯长程态转动常数的精密测量

  • 1. 量子光学与光量子器件国家重点实验室, 山西大学激光光谱研究所, 太原 030006
    基金项目: 国家重点基础研究发展计划(批准号: 2012CB921603)、国家自然科学基金(批准号: 61008012,10934004)、国家高技术研究发展计划(批准号: 2011AA010801)、国家自然科学基金国际(地区)合作与交流项目(批准号: 2011DFA12490)、教育部新教师基金(批准号: 20101401120004)和山西省青年科技研究基金(批准号: 2013021005-1)资助的课题.

摘要: 利用调制的俘获损耗光谱技术实验测量了超冷铯分子纯长程0g-态的高分辨光谱. 采用双光缔合光谱技术构建了精确的频率差参考信号, 对转动能级的共振频率间隔进行了精确的标定, 获得了转动能级频率间隔与转动量子数的关系. 通过将实验数据拟合到非刚性转动模型, 获得了超冷铯分子纯长程0g-态不同振动态的转动常数. 实验结果表明转动常数随振动量子数的增加而线性减小, 线性递减率为-0.41 MHz0.01 MHz.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回