搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合排列向列相液晶薄盒中1/2向错引起的有序重构的扩散

路丽霞 张志东 周璇

引用本文:
Citation:

混合排列向列相液晶薄盒中1/2向错引起的有序重构的扩散

路丽霞, 张志东, 周璇

Diffusion of order reconstruction induced by 1/2 wedge disclination in a thin hybrid nematic liquid-crystal cell

Lu Li-Xia, Zhang Zhi-Dong, Zhou Xuan
PDF
导出引用
  • 基于Landau-de Gennes理论, 利用松弛迭代法, 研究了混合排列向列相液晶薄盒中1/2向错引起的有序重构的扩散现象, 给出了1/2向错的核结构、双轴性结构, 以及盒厚减小时有序重构的扩散. 当盒厚小于15时, 随着盒厚的减小, 向错范围和有序重构区域沿基板方向迅速扩散; 当盒厚减小到临界厚度10时, 有序重构的范围扩散到整个液晶盒中, 以向错中心所对应的平面为界, 指向矢一部分垂面排列, 另一部分沿面排列. 本文的研究对拓扑缺陷对向列相液晶中的亚微米胶体粒子的调节作用具有一定的理论指导意义.
    Based on the Landau-de Gennes theory, the diffusion of order reconstruction induced by 1/2 wedge disclination in a thin hybrid cell is investigated by the relaxation iterative method. The core structure, the biaxial structure, and the diffusion of order reconstruction as the cell thickness decreases, are explored. The defect structure and the range of order reconstruction do not change when the cell thickness is larger than 15. As the thickness decreases from 15, the defect range broadens along the substrate direction, and the biaxial region as well as the range of order reconstruction also enlarges. When the thickness further decreases to below the critical value of 10, the biaxial region and the order reconstruction range merge into an entire cell, where the planar orientation is abruptly converted into the perpendicular one across the biaxial wall. The results obtained in this paper are important for further studying the regulating effect of topological defect on submicron colloidal particles in nematics.
    • 基金项目: 国家自然科学基金(批准号: 11374087) 和河北省高等学校科学技术研究指导项目(批准号: Z2011133)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11374087) and the Research Project of Hebei Education Department, China (Grant No. Z2011133).
    [1]

    Guo J C, Guo H C 2000 Acta Phys. Sin. 49 1995 (in Chinese) [郭建成, 郭海成 2000 物理学报 49 1995]

    [2]

    Deng S P, Li W C, Huang W B, Liu Y G, Peng Z H, Lu X H, Xuan L 2011 Acta Phys. Sin. 60 066103 (in Chinese) [邓舒鹏, 李文萃, 黄文彬, 刘永刚, 彭增辉, 鲁兴海, 宣丽 2011 物理学报 60 066103]

    [3]

    Dai Q, Li Y, Wu R N, Geng Y, Quan W, Li Y Q, Peng Z H, Yao L S 2013 Acta Phys. Sin. 62 044219 (in Chinese) [岱钦, 李勇, 乌日娜, 耿岳, 全薇, 李业秋, 彭增辉, 姚丽双 2013 物理学报 62 044219]

    [4]

    Kurik M V, Lavrentovich O D 1988 Sov. Phy. Usp. 31 196

    [5]

    Takuya O, Jun-ichi F, Kosuke S, Tomohiko Y 2012 Phys. Rev. E 86 030701(R)

    [6]

    Reichenstein M, Stark H, Stelzer J, Trebin H R 2001 Phys. Rev. E 65 011709

    [7]

    Tiribocchi A, Gonnella G, Marenduzzo D, Orlandini E 2010 Appl. Phys. Lett. 97 143505

    [8]

    Mermin N D 1979 Rev. Mod. Phys. 51 591

    [9]

    Yang G H, Zhang H, Duan Y S 2002 Chin. Phys. 11 415

    [10]

    Gennes P G, Prost J 2008 The Physics of Liquid Crystals (2nd Ed.) (Beijing: Science Press) p166, 171, 165

    [11]

    Schopohl N, Sluckin T J 1987 Phys. Rev. Lett. 59 2582

    [12]

    Palffy-Muhoray P, Gartland E C, Kelly J R 1994 Liq. Cryst. 16 713

    [13]

    Kralj S, Virga E G 2001 J. Phys. A 34 829

    [14]

    Rosso R, Virga E G 1996 J. Phys. A 29 4247

    [15]

    Kralj S, Virga E G, Žumer S 1999 Phys. Rev. E 60 1858

    [16]

    Ambrožič M, Kralj S, Virga E G 2007 Phys. Rev. E 75 031708

    [17]

    Barberi R, Ciuchi F, Durand G, Iovane M, Sikharulidze D, Sonnet A, Virga E 2004 Eur. Phys. J. E 13 61

    [18]

    Kralj S, Rosso R, Virga E G 2010 Phys. Rev. E 81 021702

    [19]

    Martinot-Lagarde P, Dreyfus-Lambez H, Dozov I, 2003 Phys. Rev. E 67 051710

    [20]

    Carbone G, Lombardo G, Barberi R 2009 Phys. Rev. Lett. 103 167801

    [21]

    Zappone B, Richetti P, Barberi R, Bartolino R, Nguyen H T 2005 Phys. Rev. E 71 041703

    [22]

    Ayeb H, Ciuchi F, Lombardo G, Barberi R 2008 Mol. Cryst. Liq. Cryst. 481 73

    [23]

    Bisi F, Gartland E C, Rosso R, Virga E G 2003 Phys. Rev. E 68 021707

    [24]

    Lombardo G, Ayeb H, Barberi R 2008 Phys. Rev. E 77 051708

  • [1]

    Guo J C, Guo H C 2000 Acta Phys. Sin. 49 1995 (in Chinese) [郭建成, 郭海成 2000 物理学报 49 1995]

    [2]

    Deng S P, Li W C, Huang W B, Liu Y G, Peng Z H, Lu X H, Xuan L 2011 Acta Phys. Sin. 60 066103 (in Chinese) [邓舒鹏, 李文萃, 黄文彬, 刘永刚, 彭增辉, 鲁兴海, 宣丽 2011 物理学报 60 066103]

    [3]

    Dai Q, Li Y, Wu R N, Geng Y, Quan W, Li Y Q, Peng Z H, Yao L S 2013 Acta Phys. Sin. 62 044219 (in Chinese) [岱钦, 李勇, 乌日娜, 耿岳, 全薇, 李业秋, 彭增辉, 姚丽双 2013 物理学报 62 044219]

    [4]

    Kurik M V, Lavrentovich O D 1988 Sov. Phy. Usp. 31 196

    [5]

    Takuya O, Jun-ichi F, Kosuke S, Tomohiko Y 2012 Phys. Rev. E 86 030701(R)

    [6]

    Reichenstein M, Stark H, Stelzer J, Trebin H R 2001 Phys. Rev. E 65 011709

    [7]

    Tiribocchi A, Gonnella G, Marenduzzo D, Orlandini E 2010 Appl. Phys. Lett. 97 143505

    [8]

    Mermin N D 1979 Rev. Mod. Phys. 51 591

    [9]

    Yang G H, Zhang H, Duan Y S 2002 Chin. Phys. 11 415

    [10]

    Gennes P G, Prost J 2008 The Physics of Liquid Crystals (2nd Ed.) (Beijing: Science Press) p166, 171, 165

    [11]

    Schopohl N, Sluckin T J 1987 Phys. Rev. Lett. 59 2582

    [12]

    Palffy-Muhoray P, Gartland E C, Kelly J R 1994 Liq. Cryst. 16 713

    [13]

    Kralj S, Virga E G 2001 J. Phys. A 34 829

    [14]

    Rosso R, Virga E G 1996 J. Phys. A 29 4247

    [15]

    Kralj S, Virga E G, Žumer S 1999 Phys. Rev. E 60 1858

    [16]

    Ambrožič M, Kralj S, Virga E G 2007 Phys. Rev. E 75 031708

    [17]

    Barberi R, Ciuchi F, Durand G, Iovane M, Sikharulidze D, Sonnet A, Virga E 2004 Eur. Phys. J. E 13 61

    [18]

    Kralj S, Rosso R, Virga E G 2010 Phys. Rev. E 81 021702

    [19]

    Martinot-Lagarde P, Dreyfus-Lambez H, Dozov I, 2003 Phys. Rev. E 67 051710

    [20]

    Carbone G, Lombardo G, Barberi R 2009 Phys. Rev. Lett. 103 167801

    [21]

    Zappone B, Richetti P, Barberi R, Bartolino R, Nguyen H T 2005 Phys. Rev. E 71 041703

    [22]

    Ayeb H, Ciuchi F, Lombardo G, Barberi R 2008 Mol. Cryst. Liq. Cryst. 481 73

    [23]

    Bisi F, Gartland E C, Rosso R, Virga E G 2003 Phys. Rev. E 68 021707

    [24]

    Lombardo G, Ayeb H, Barberi R 2008 Phys. Rev. E 77 051708

计量
  • 文章访问数:  2624
  • PDF下载量:  399
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-28
  • 修回日期:  2013-07-26
  • 刊出日期:  2013-11-05

混合排列向列相液晶薄盒中1/2向错引起的有序重构的扩散

  • 1. 中国科学院 长春光学精密机械与物理研究所, 长春 130033;
  • 2. 中国科学院大学, 北京 100049;
  • 3. 河北工业大学理学院, 天津 300401
    基金项目: 国家自然科学基金(批准号: 11374087) 和河北省高等学校科学技术研究指导项目(批准号: Z2011133)资助的课题.

摘要: 基于Landau-de Gennes理论, 利用松弛迭代法, 研究了混合排列向列相液晶薄盒中1/2向错引起的有序重构的扩散现象, 给出了1/2向错的核结构、双轴性结构, 以及盒厚减小时有序重构的扩散. 当盒厚小于15时, 随着盒厚的减小, 向错范围和有序重构区域沿基板方向迅速扩散; 当盒厚减小到临界厚度10时, 有序重构的范围扩散到整个液晶盒中, 以向错中心所对应的平面为界, 指向矢一部分垂面排列, 另一部分沿面排列. 本文的研究对拓扑缺陷对向列相液晶中的亚微米胶体粒子的调节作用具有一定的理论指导意义.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回