搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pr含量对Bi5Fe0.5Co0.5Ti3O15室温多铁性的影响

王琴 王逸伦 王浩 孙慧 毛翔宇 陈小兵

引用本文:
Citation:

Pr含量对Bi5Fe0.5Co0.5Ti3O15室温多铁性的影响

王琴, 王逸伦, 王浩, 孙慧, 毛翔宇, 陈小兵

Effect of doping Pr on multiferroic properties of Bi5Fe0.5Co0.5Ti3O15 ceramics at room temperature

Wang Qin, Wang Yi-Lun, Wang Hao, Sun Hui, Mao Xiang-Yu, Chen Xiao-Bing
PDF
导出引用
  • 采用改良的固相烧结工艺制备了Bi5-xPrxFe0.5Co0.5Ti3O15(BPFCT-x,x=0.25,0.50,0.75,0.80)陶瓷样品. X射线衍射结构分析表明:镨(Pr)含量对样品微观结构产生了影响,但所有样品均为层状钙钛矿结构;BPFCT-x样品的剩余极化强度(2Pr)随着掺杂量的增加呈现出先增大后减小的变化趋势,当Pr 含量为0.75时,样品的2Pr达到最大值,为6.43 μC/cm2. 样品的磁性与铁电性能具有相同的变化规律,室温下样品的剩余磁化强度(2Mr)也呈现出先增大后减小的趋势,并且也在x=0.75时达到最大为0.097 emu/g. 随着Pr掺杂量增大,样品的室温下铁电和铁磁性能得到明显改善,并且当掺杂量为0.75时,样品室温多铁性最好. Pr掺杂降低了样品中的缺陷浓度,从而提高了样品铁电畴动性,这有助于提高样品铁电性能. 而样品铁磁性能的改善可能与Pr对样品晶格畸变产生的影响有关.
    The polycrystalline Bi5-xPrxFe0.5Co0.5Ti3O15 (BPFCT-x: x=0.25, 0.50, 075, 0.80) ceramics are prepared by an improved solid state reaction method. X-ray diffraction structure analysis shows that the content of Pr has an influence on the microstructure of sample, but all the samples are layered perovskite structure. The remanent polarization (2Pr) first increases and then decreases with the increase of Pr content (x), so do the magnetic and ferroelectric properties. The remanent polarization reaches a maximum vaule of 6.43 μC/cm2, when x = 0.75. The remanent magnetization (2Mr) increases to a maximum value of 0.097 emu/g when x=0.75, and then decreases with the increase of Pr content (x). with the increase of Pr doping the ferroelectric and ferromagnetic properties of sample at room temperature can be obviously improved, and when x=0.75, multiferroic properties of the sample at room temperature is the best. The improvement in ferroelectric properties of sample is related to Pr doping. With the increase of Pr content (x), the defect concentration of the sample can be reduced, ferroelectric domain of movement can be improved, and the improvement in ferromagnetic property is possibly related to the lattice deformation which is affected by Pr.
    • 基金项目: 国家自然科学基金会(批准号:510721770,11374227)、国家重点基础研究发展计划(批准号:2012CB22001)和江苏省省属高校自然科学研究面上项目(批准号:12KJB140013)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 510721770, 11374227), the National Basic Research Program of China (Grant No. 2012CB22001), and the Natural Science Research Project of Jiangsu Provincial Colleges and Universities, China (Grant No. 12KJB140013).
    [1]

    Spaldin N A, Fiebig M 2005 Science 309 391

    [2]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [3]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanthan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wutting M, Ramesh R 2003 Science 299 1719

    [4]

    Sun Y, Huang Z F, Fan H G, Ming X, Wang C Z, Chen G 2009 Acta Phys. Sin. 58 193 (in Chinese) [孙源, 黄祖飞, 范厚刚, 明星, 王春忠, 陈岗 2009 物理学报 58 193]

    [5]

    Chen X B, Hui R, Zhu J 2004 J. Appl. Phys. 96 1

    [6]

    Park B H, Hyun S J, Bu S D, Noh T W, Lee J, Kim H-D, Kim T H, Jo W 1999 Appl. Phys. Lett. 74 1907

    [7]

    Kubel F, Schmid H 1992 Ferroelectrics 129 101

    [8]

    Kim S K, Miyayama M, Yanagida H 1996 Mater. Res. Bull. 31 121

    [9]

    Porob D G, Maggard P A 2006 Mater. Res. Bull. 41 1513

    [10]

    Singh R S, Bhimasankaram T, Kumar G S, Suryananrayana S V 1994 Solid State Commun. 91 576

    [11]

    Srinivas A, Suryananrayana S V, Kumar G S, Mahesh K M 1999 J. Phys.: Coondens. Matter 11 3335

    [12]

    Luo B C, Zhou C C, Chen C L, Jin K X 2009 Acta Phys. Sin. 58 4563 (in Chinese) [罗炳成, 周超超, 陈长乐, 金克新 2009 物理学报 58 4563]

    [13]

    Mao X Y, Wang W, Chen X B, Lu Y L 2009 Appl. Phys. Lett. 95 082901

    [14]

    Lah M A, Habout I, SDiet Z M 2009 Appl. Phys. Lett. 94 012903

    [15]

    Liu J, Fang L, Zheng F, Ju S, Shen M 2009 Appl. Phys. Lett. 95 022511

    [16]

    Khomchenko V A, Troyanchuk I O, Kovetskaya M I, Paixao J A 2012 J. Appl. Phys. 111 014110

    [17]

    Guo R, Fang L, Dong W, Zheng F, Shen M 2010 J. Phys. Chem. 114 21390

    [18]

    Li N N, Li H, Tang R L, Han D D, Zhao Y S, Gao W, Zhu P W, Wang X 2014 Chin. Phys. B 23 046105

    [19]

    Sun S J, Ling Y H, Peng R R, Liu M, Mao X Y, Chen X B, Knized J R, Lu Y L 2013 RSC Adv. 3 18567

    [20]

    Zheng L, Wu X S 2013 Chin. Phys. B 22 107806

    [21]

    Mao X Y, Sun H, Wang W, Chen X B, Lu Y L 2013 Appl. Phys. Lett. 10 072904

    [22]

    Simant K S, Gajbhiye N S, Banerjee A 2013 J. Appl. Phys. 113 203917

    [23]

    Dong C, Wu F, Chen H 1999 J. Appl. Cryst. 32 850

    [24]

    Yang F J, Su P, Wei C, Chen X Q, Yang C P, Cao W Q 2011 J. Appl. Phys. 110 126102

    [25]

    Singh R S, Bhimasankaram T, Kumar G S, Suryananrayana S V 1994 Solid State Commun. 91 567

    [26]

    Dong X W, Wang K F, Wan J G, Zhu J S, Liu J M 2008 J. Appl. Phys. 103 094101

    [27]

    Singh R S, Bhimasankaram T, Kumar G S, Suryananrayana S V 1994 Solid State Commun. 91 567

    [28]

    Zhu J, Chen X B, Lu W P, Mao X Y, Hui R 2003 Appl. Phys. Lett. 83 1818

    [29]

    Wang W, Zhu J, Mao X Y, Chen X B 2006 Appl. Phys. Lett. 39 370

    [30]

    Xie B C, He Q, Shen T G 2006 Acta Sin. Opt. 12 95 (in Chinese) [谢秉川, 何勤, 沈廷根 2006 量子光学学报 12 95]

    [31]

    Cai M Q, Liu J C, Yang G W, Cao Y L, Tan X, Yi X, Wang Y G, Wang L L, Hu W Y 2007 J. Chem. Phys. 126 154708

    [32]

    Hu X, Wang W, Mao X Y, Chen X B 2010 Acta Phys. Sin. 59 8160 (in Chinese) [胡星, 王伟, 毛翔宇, 陈小兵 2010 物理学报 59 8160]

  • [1]

    Spaldin N A, Fiebig M 2005 Science 309 391

    [2]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [3]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanthan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wutting M, Ramesh R 2003 Science 299 1719

    [4]

    Sun Y, Huang Z F, Fan H G, Ming X, Wang C Z, Chen G 2009 Acta Phys. Sin. 58 193 (in Chinese) [孙源, 黄祖飞, 范厚刚, 明星, 王春忠, 陈岗 2009 物理学报 58 193]

    [5]

    Chen X B, Hui R, Zhu J 2004 J. Appl. Phys. 96 1

    [6]

    Park B H, Hyun S J, Bu S D, Noh T W, Lee J, Kim H-D, Kim T H, Jo W 1999 Appl. Phys. Lett. 74 1907

    [7]

    Kubel F, Schmid H 1992 Ferroelectrics 129 101

    [8]

    Kim S K, Miyayama M, Yanagida H 1996 Mater. Res. Bull. 31 121

    [9]

    Porob D G, Maggard P A 2006 Mater. Res. Bull. 41 1513

    [10]

    Singh R S, Bhimasankaram T, Kumar G S, Suryananrayana S V 1994 Solid State Commun. 91 576

    [11]

    Srinivas A, Suryananrayana S V, Kumar G S, Mahesh K M 1999 J. Phys.: Coondens. Matter 11 3335

    [12]

    Luo B C, Zhou C C, Chen C L, Jin K X 2009 Acta Phys. Sin. 58 4563 (in Chinese) [罗炳成, 周超超, 陈长乐, 金克新 2009 物理学报 58 4563]

    [13]

    Mao X Y, Wang W, Chen X B, Lu Y L 2009 Appl. Phys. Lett. 95 082901

    [14]

    Lah M A, Habout I, SDiet Z M 2009 Appl. Phys. Lett. 94 012903

    [15]

    Liu J, Fang L, Zheng F, Ju S, Shen M 2009 Appl. Phys. Lett. 95 022511

    [16]

    Khomchenko V A, Troyanchuk I O, Kovetskaya M I, Paixao J A 2012 J. Appl. Phys. 111 014110

    [17]

    Guo R, Fang L, Dong W, Zheng F, Shen M 2010 J. Phys. Chem. 114 21390

    [18]

    Li N N, Li H, Tang R L, Han D D, Zhao Y S, Gao W, Zhu P W, Wang X 2014 Chin. Phys. B 23 046105

    [19]

    Sun S J, Ling Y H, Peng R R, Liu M, Mao X Y, Chen X B, Knized J R, Lu Y L 2013 RSC Adv. 3 18567

    [20]

    Zheng L, Wu X S 2013 Chin. Phys. B 22 107806

    [21]

    Mao X Y, Sun H, Wang W, Chen X B, Lu Y L 2013 Appl. Phys. Lett. 10 072904

    [22]

    Simant K S, Gajbhiye N S, Banerjee A 2013 J. Appl. Phys. 113 203917

    [23]

    Dong C, Wu F, Chen H 1999 J. Appl. Cryst. 32 850

    [24]

    Yang F J, Su P, Wei C, Chen X Q, Yang C P, Cao W Q 2011 J. Appl. Phys. 110 126102

    [25]

    Singh R S, Bhimasankaram T, Kumar G S, Suryananrayana S V 1994 Solid State Commun. 91 567

    [26]

    Dong X W, Wang K F, Wan J G, Zhu J S, Liu J M 2008 J. Appl. Phys. 103 094101

    [27]

    Singh R S, Bhimasankaram T, Kumar G S, Suryananrayana S V 1994 Solid State Commun. 91 567

    [28]

    Zhu J, Chen X B, Lu W P, Mao X Y, Hui R 2003 Appl. Phys. Lett. 83 1818

    [29]

    Wang W, Zhu J, Mao X Y, Chen X B 2006 Appl. Phys. Lett. 39 370

    [30]

    Xie B C, He Q, Shen T G 2006 Acta Sin. Opt. 12 95 (in Chinese) [谢秉川, 何勤, 沈廷根 2006 量子光学学报 12 95]

    [31]

    Cai M Q, Liu J C, Yang G W, Cao Y L, Tan X, Yi X, Wang Y G, Wang L L, Hu W Y 2007 J. Chem. Phys. 126 154708

    [32]

    Hu X, Wang W, Mao X Y, Chen X B 2010 Acta Phys. Sin. 59 8160 (in Chinese) [胡星, 王伟, 毛翔宇, 陈小兵 2010 物理学报 59 8160]

  • [1] 郑明, 杨健, 张怡笑, 关朋飞, 程奥, 范贺良. Sm3+掺杂0.94Bi0.5Na0.5TiO3-0.06BaTiO3无机多功能陶瓷的储能行为和光致发光性质. 物理学报, 2023, 72(17): 177801. doi: 10.7498/aps.72.20230685
    [2] 王少霞, 赵旭才, 潘多桥, 庞国旺, 刘晨曦, 史蕾倩, 刘桂安, 雷博程, 黄以能, 张丽丽. 过渡金属(Cr, Mn, Fe, Co)掺杂对TiO2磁性影响的第一性原理研究. 物理学报, 2020, 69(19): 197101. doi: 10.7498/aps.69.20200644
    [3] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [4] 侯清玉, 李勇, 赵春旺. Al掺杂和空位对ZnO磁性影响的第一性原理研究. 物理学报, 2017, 66(6): 067202. doi: 10.7498/aps.66.067202
    [5] 孙晓东, 徐宝, 吴鸿业, 曹凤泽, 赵建军, 鲁毅. Tb掺杂双层锰氧化物La4/3Sr5/3Mn2O7的磁熵变和电输运性质. 物理学报, 2017, 66(15): 157501. doi: 10.7498/aps.66.157501
    [6] 齐伟华, 马丽, 李壮志, 唐贵德, 吴光恒. 金属价电子结构对磁性和电输运性质的影响. 物理学报, 2017, 66(2): 027101. doi: 10.7498/aps.66.027101
    [7] 万素磊, 何利民, 向俊尤, 王志国, 邢茹, 张雪峰, 鲁毅, 赵建军. 钙钛矿型锰氧化物(La0.8Eu0.2)4/3Sr5/3Mn2O7的磁性和电性研究. 物理学报, 2014, 63(23): 237501. doi: 10.7498/aps.63.237501
    [8] 何利民, 冀钰, 鲁毅, 吴鸿业, 张雪峰, 赵建军. 钙钛矿锰氧化物(La1-xEux)4/3Sr5/3Mn2O7(x=0, 0.15)的磁性和电性研究. 物理学报, 2014, 63(14): 147503. doi: 10.7498/aps.63.147503
    [9] 李诚迪, 赵敬龙, 仲崇贵, 董正超, 方靖淮. 量子顺电EuTiO3材料基态磁性的第一性原理研究. 物理学报, 2014, 63(8): 087502. doi: 10.7498/aps.63.087502
    [10] 王江舵, 代建清, 宋玉敏, 张虎, 牛之慧. BaTiO3/SrTiO3(1:1)超晶格的晶格动力学、介电和压电性能的第一性原理研究. 物理学报, 2014, 63(12): 126301. doi: 10.7498/aps.63.126301
    [11] 周大雨, 徐进. Si掺杂HfO2薄膜的铁电和反铁电性质. 物理学报, 2014, 63(11): 117703. doi: 10.7498/aps.63.117703
    [12] 林雪玲, 潘凤春. 氮掺杂的金刚石磁性研究. 物理学报, 2013, 62(16): 166102. doi: 10.7498/aps.62.166102
    [13] 杜音, 王文洪, 张小明, 刘恩克, 吴光恒. 铁基Heusler合金Fe2Co1-xCrxSi的结构、磁性和输运性质的研究. 物理学报, 2012, 61(14): 147304. doi: 10.7498/aps.61.147304
    [14] 周文亮, 夏坤, 许达, 仲崇贵, 董正超, 方靖淮. 应变作用下量子顺电材料EuTiO3的磁电性质. 物理学报, 2012, 61(9): 097702. doi: 10.7498/aps.61.097702
    [15] 张富春, 张威虎, 董军堂, 张志勇. Cr掺杂ZnO纳米线的电子结构和磁性. 物理学报, 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [16] 蒋冬冬, 谷岩, 冯玉军, 杜金梅. 静水压下锆锡钛酸铅铁电陶瓷相变和介电性能研究. 物理学报, 2011, 60(10): 107703. doi: 10.7498/aps.60.107703
    [17] 仲崇贵, 蒋青, 方靖淮, 葛存旺. 单相ABO3型多铁材料的磁电耦合及磁电性质研究. 物理学报, 2009, 58(5): 3491-3496. doi: 10.7498/aps.58.3491
    [18] 韩立安, 陈长乐, 董慧迎, 王建元, 高国棉, 罗炳成. 层状钙钛矿La1.3Sr1.7Mn2-xCuxO7的磁性及电特性. 物理学报, 2008, 57(1): 541-544. doi: 10.7498/aps.57.541
    [19] 张加宏, 马 荣, 刘 甦, 刘 楣. 掺杂MgCNi3超导电性和磁性的第一性原理研究. 物理学报, 2006, 55(9): 4816-4821. doi: 10.7498/aps.55.4816
    [20] 朱志永, 王文全, 苗元华, 王岩松, 陈丽婕, 代学芳, 刘国栋, 陈京兰, 吴光恒. 掺杂对Ni51.5Mn25Ga23.5相变行为和磁性的影响. 物理学报, 2005, 54(10): 4894-4897. doi: 10.7498/aps.54.4894
计量
  • 文章访问数:  4582
  • PDF下载量:  398
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-15
  • 修回日期:  2014-03-26
  • 刊出日期:  2014-07-05

/

返回文章
返回