搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正压大气环流中的曲面周期波和孤波

毛杰键 吴波 付敏 黄瑛 杨建荣 任博 刘萍

引用本文:
Citation:

正压大气环流中的曲面周期波和孤波

毛杰键, 吴波, 付敏, 黄瑛, 杨建荣, 任博, 刘萍

Periodic wave and solitary wave of curved face in barotropic atmospheric circulation

Mao Jie-Jian, Wu Bo, Fu Min, Huang Ying, Yang Jian-Rong, Ren Bo, Liu Ping
PDF
导出引用
  • 大尺度正压大气环流的波动特征对理解气候变化具有重要的意义,而非线性浅水波方程组是描述大尺度正压大气环流的原始控制方程. 本文对线性方程的复变函数解,通过二次适当的移植,求得浅水波方程组的发展方程的扰动位势 的实变函数解,该实变函数解析解由基流项和波动项两部分组成. 其中基流由波数、波速、β效应、变形半径和时间的任意函数共同决定;波动项与β效应有关. 分析表明,在大尺度正压大气环流中扰动位势存在曲面的周期波和孤波的现象,周期波与孤波相互调制而呈现不稳定性;当多个周期孤波同时出现时,则彼此独立传播;扰动位势波动项中的时间任意函数对曲面周期孤波的波幅有调制作用,可控制波的产生、发展和消失. 所得结果对研究大气波动现象和气候变化具有一定的理论参考价值.
    The wave motion characteristic of large-scale barotropic atmospheric circulation, which can be described by the original nonlinear shallow water equations, is important for comprehending the climatic change. Employing the complex solution of linear equation, and transplanting it twice, the new analytic solution of disturbed height field of the nonlinear evolution equation is obtained which is constructed by the basic flow term and fluctuation term. The basic flow is codetermined by the wave number, wave velocity, β effect, radius of deformation and arbitrary function of time. The fluctuation term is related to β effect, and displays that in the disturbed height field there exist the periodic wave and solitary wave of curved face, which modulate each other and present instability; several periodic-solitary waves can propagate independently when they appear simultaneously; the arbitrary function of time in the fluctuation term has a modulation effect on the amplitude of periodic-solitary wave, and can control the occurrence, development and vanishing of wave. The results have a certain theoretical reference value for studying the atmospheric fluctuation phenomena and climatic change.
    • 基金项目: 江西省自然科学基金(批准号:2009GZW0026,2012BAB202008)、国家自然科学基金(批准号:11465015,11365017,11305106,11305031)和江西省教育厅科技落地项目(批准号:KJLD13086)资助的课题.
    • Funds: Project supported by the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 2009GZW0026, 2012BAB202008), the National Natural Science Foundation of China (Grant Nos. 11465015, 11365017, 11305106, 11305031), and the Technology Landing Project of the Education Department of Jiangxi Province of China (Grant No. KJLD13086).
    [1]

    Vincent H C 2010 J. Hydro-Enviro. Res. 3 173

    [2]

    Callaghan T G, Forbes L K 2006 J. Comput. Phys. 217 845

    [3]

    Phillips N A 1959 Mon. Weather Rev. 87 333

    [4]

    Williamson D L, Drake J B, Hack J J, Jakob R, Swarztrauber P N 1992 J. Comput. Phys. 102 211

    [5]

    Thuburn J, Li Y 2000 Tellus A 52 181

    [6]

    Baines P G 1976 J. Fluid Mech. 73 193

    [7]

    Mao J J, Yang J R 2013 Acta Phys. Sin. 62 130205(in Chinese)[毛杰健, 杨建荣 2013 物理学报 62 130205]

    [8]

    Pinilla C, Chu V H 2008 J. Coastal Res. 52 207

    [9]

    He J R, Li H M 2011 Phys. Rev. E 83 066607

    [10]

    Yang J R, Mao J J 2008 Commun. Theor. Phys. 49 22

    [11]

    Yang J R, Mao J J 2008 Chin. Phys. B 17 4337

    [12]

    Yang J R, Mao J J, Tang X Y 2013 Chin. Phys. B 22 115203

    [13]

    Mao J J, Yang J R 2005 Acta Phys. Sin. 54 4999(in Chinese)[毛杰健, 杨建荣 2005 物理学报 54 4999]

    [14]

    Mao J J, Yang J R 2006 Chin. Phys. 15 2804

    [15]

    Mao J J, Yang J R 2007 Acta Phys. Sin. 56 5049(in Chinese)[毛杰健, 杨建荣 2007 物理学报 56 5049]

    [16]

    Lou S Y, Jia M, Huang F, Tang X Y 2007 J. Theor. Phys. 46 2082

    [17]

    Lou S Y, Jia M, Tang X Y, Huang F 2007 Phys. Rev. E 75 056318

    [18]

    Tang X Y, Shukla P K 2007 J. Phys. A: Math. Theor. 40 5921

    [19]

    Tang X Y, Shukla P K 2007 Phys. Scr. 76 665

    [20]

    Lou S Y, Tang X Y, Lin J 2000 J. Math. Phys. 41 8286

    [21]

    Lou S Y, Li Y Q, Tang X Y 2013 Chin. Phys. Lett. 30 080202

    [22]

    Luo D H 2005 J. Atmos. Sci. 62 3202

    [23]

    Huang F, Tang X Y, Lou S Y, Lu C H 2007 J. Atmos. Sci. 64 52

    [24]

    Chow K W 2002 Wave Motion 35 71

    [25]

    Ma W X 2002 Phys. Lett. A 301 35

    [26]

    Luo D H 1996 Wave Motion 24 315

    [27]

    Steinbock O, Zykov V S, Muller S C 1993 Phys. Rev. E 48 3295

    [28]

    Gao X, Zhang H, Zykov V, Bodenschatz E 2014 New J. Phys. 16 033012

    [29]

    Barboza R, Bortolozzo U, Assanto G, Vidal-Henriquez E, Clerc M G, Residori S 2012 Phys. Rev. Lett. 109 143901

    [30]

    Uchida S 1956 J. Aeronaut. Sci. 23 830

    [31]

    Mitria F G, Fellahb Z E A 2011 Ultrasonics 51 523

    [32]

    Zhao X F, Huang S X 2013 Acta Phys. Sin. 62 099204(in Chinese)[赵小峰, 黄思训 2013 物理学报 62 099204]

    [33]

    Karimian A, Yardim C, Gerstoft P, Hodgkiss W S, Barrios A E 2012 IEEE Trans. 60 4408

    [34]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computa Tional Ocean Acoustics (2nd Ed.) (New Yark: Springer-Verlag)

  • [1]

    Vincent H C 2010 J. Hydro-Enviro. Res. 3 173

    [2]

    Callaghan T G, Forbes L K 2006 J. Comput. Phys. 217 845

    [3]

    Phillips N A 1959 Mon. Weather Rev. 87 333

    [4]

    Williamson D L, Drake J B, Hack J J, Jakob R, Swarztrauber P N 1992 J. Comput. Phys. 102 211

    [5]

    Thuburn J, Li Y 2000 Tellus A 52 181

    [6]

    Baines P G 1976 J. Fluid Mech. 73 193

    [7]

    Mao J J, Yang J R 2013 Acta Phys. Sin. 62 130205(in Chinese)[毛杰健, 杨建荣 2013 物理学报 62 130205]

    [8]

    Pinilla C, Chu V H 2008 J. Coastal Res. 52 207

    [9]

    He J R, Li H M 2011 Phys. Rev. E 83 066607

    [10]

    Yang J R, Mao J J 2008 Commun. Theor. Phys. 49 22

    [11]

    Yang J R, Mao J J 2008 Chin. Phys. B 17 4337

    [12]

    Yang J R, Mao J J, Tang X Y 2013 Chin. Phys. B 22 115203

    [13]

    Mao J J, Yang J R 2005 Acta Phys. Sin. 54 4999(in Chinese)[毛杰健, 杨建荣 2005 物理学报 54 4999]

    [14]

    Mao J J, Yang J R 2006 Chin. Phys. 15 2804

    [15]

    Mao J J, Yang J R 2007 Acta Phys. Sin. 56 5049(in Chinese)[毛杰健, 杨建荣 2007 物理学报 56 5049]

    [16]

    Lou S Y, Jia M, Huang F, Tang X Y 2007 J. Theor. Phys. 46 2082

    [17]

    Lou S Y, Jia M, Tang X Y, Huang F 2007 Phys. Rev. E 75 056318

    [18]

    Tang X Y, Shukla P K 2007 J. Phys. A: Math. Theor. 40 5921

    [19]

    Tang X Y, Shukla P K 2007 Phys. Scr. 76 665

    [20]

    Lou S Y, Tang X Y, Lin J 2000 J. Math. Phys. 41 8286

    [21]

    Lou S Y, Li Y Q, Tang X Y 2013 Chin. Phys. Lett. 30 080202

    [22]

    Luo D H 2005 J. Atmos. Sci. 62 3202

    [23]

    Huang F, Tang X Y, Lou S Y, Lu C H 2007 J. Atmos. Sci. 64 52

    [24]

    Chow K W 2002 Wave Motion 35 71

    [25]

    Ma W X 2002 Phys. Lett. A 301 35

    [26]

    Luo D H 1996 Wave Motion 24 315

    [27]

    Steinbock O, Zykov V S, Muller S C 1993 Phys. Rev. E 48 3295

    [28]

    Gao X, Zhang H, Zykov V, Bodenschatz E 2014 New J. Phys. 16 033012

    [29]

    Barboza R, Bortolozzo U, Assanto G, Vidal-Henriquez E, Clerc M G, Residori S 2012 Phys. Rev. Lett. 109 143901

    [30]

    Uchida S 1956 J. Aeronaut. Sci. 23 830

    [31]

    Mitria F G, Fellahb Z E A 2011 Ultrasonics 51 523

    [32]

    Zhao X F, Huang S X 2013 Acta Phys. Sin. 62 099204(in Chinese)[赵小峰, 黄思训 2013 物理学报 62 099204]

    [33]

    Karimian A, Yardim C, Gerstoft P, Hodgkiss W S, Barrios A E 2012 IEEE Trans. 60 4408

    [34]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computa Tional Ocean Acoustics (2nd Ed.) (New Yark: Springer-Verlag)

  • [1] 石兰芳, 林万涛, 林一骅, 莫嘉琪. 一类非线性方程类孤波的近似解法. 物理学报, 2013, 62(1): 010201. doi: 10.7498/aps.62.010201
    [2] 毛杰健, 杨建荣. 大尺度浅水波方程中相互调制的非线性波. 物理学报, 2013, 62(13): 130205. doi: 10.7498/aps.62.130205
    [3] 莫嘉琪, 张伟江, 陈贤峰. 一类强非线性发展方程孤波变分迭代解法. 物理学报, 2009, 58(11): 7397-7401. doi: 10.7498/aps.58.7397
    [4] 莫嘉琪, 林万涛. 一类大气浅水波方程的近似解. 物理学报, 2007, 56(7): 3662-3666. doi: 10.7498/aps.56.3662
    [5] 莫嘉琪, 张伟江, 何 铭. 强非线性发展方程孤波近似解. 物理学报, 2007, 56(4): 1843-1846. doi: 10.7498/aps.56.1843
    [6] 莫嘉琪, 张伟江, 陈贤峰. 强非线性发展方程孤波同伦解法. 物理学报, 2007, 56(11): 6169-6172. doi: 10.7498/aps.56.6169
    [7] 王悦悦, 杨 琴, 戴朝卿, 张解放. 考虑量子效应的Zakharov方程组的孤波解. 物理学报, 2006, 55(3): 1029-1034. doi: 10.7498/aps.55.1029
    [8] 套格图桑, 斯仁道尔吉. 双曲函数型辅助方程构造具5次强非线性项的波方程的新精确孤波解. 物理学报, 2006, 55(1): 13-18. doi: 10.7498/aps.55.13
    [9] 套格图桑, 斯仁道尔吉. 非线性长波方程组和Benjamin方程的新精确孤波解. 物理学报, 2006, 55(7): 3246-3254. doi: 10.7498/aps.55.3246
    [10] 徐昌智, 张解放. (2+1)维非线性Burgers方程变量分离解和新型孤波结构. 物理学报, 2004, 53(8): 2407-2412. doi: 10.7498/aps.53.2407
    [11] 那仁满都拉, 乌恩宝音, 王克协. 具5次强非线性项的波方程新的孤波解. 物理学报, 2004, 53(1): 11-14. doi: 10.7498/aps.53.11
    [12] 徐桂琼, 李志斌. 两个非线性发展方程的双向孤波解与孤子解. 物理学报, 2003, 52(8): 1848-1857. doi: 10.7498/aps.52.1848
    [13] 徐桂琼, 李志斌. 构造非线性发展方程孤波解的混合指数方法. 物理学报, 2002, 51(5): 946-950. doi: 10.7498/aps.51.946
    [14] 吕克璞, 石玉仁, 段文山, 赵金保. KdV-Burgers方程的孤波解. 物理学报, 2001, 50(11): 2073-2076. doi: 10.7498/aps.50.2073
    [15] 徐炳振, 李悦科, 阎循领. 一类五阶非线性演化方程的新孤波解. 物理学报, 1998, 47(12): 1946-1951. doi: 10.7498/aps.47.1946
    [16] 段一士, 俞重远, 吴振森. 双折射光纤中非线性耦合Schr?dinger方程的小振幅孤波解. 物理学报, 1997, 46(12): 2359-2362. doi: 10.7498/aps.46.2359
    [17] 范恩贵, 张鸿庆. 非线性波动方程的孤波解. 物理学报, 1997, 46(7): 1254-1258. doi: 10.7498/aps.46.1254
    [18] 马文秀, 周德堂. 关于推广的KdV方程的孤波解. 物理学报, 1993, 42(11): 1731-1734. doi: 10.7498/aps.42.1731
    [19] 朱佐农. 推广的KdV方程的孤波解. 物理学报, 1992, 41(7): 1057-1062. doi: 10.7498/aps.41.1057
    [20] 唐世敏. 若干非线性波方程的行波解. 物理学报, 1991, 40(11): 1818-1826. doi: 10.7498/aps.40.1818
计量
  • 文章访问数:  5859
  • PDF下载量:  459
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-27
  • 修回日期:  2014-05-18
  • 刊出日期:  2014-09-05

/

返回文章
返回