搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

(火积)理论在热功转换过程中的应用探讨

程雪涛 梁新刚

引用本文:
Citation:

(火积)理论在热功转换过程中的应用探讨

程雪涛, 梁新刚

Discussion on the application of entransy theory to heat-work conversion processes

Cheng Xue-Tao, Liang Xin-Gang
PDF
导出引用
  • 分析和讨论了(火积)理论在热功转换过程的应用及其局限性. 对Carnot循环的分析表明,Carnot循环中系统的(火积)是平衡的,但(火积)和熵之间不存在dG =T2dS这样的联系. 对于一般热力学过程,分析表明,在热量传递到内可逆循环中间接对外做功时,现有的(火积)理论可用于系统的分析. 讨论了热功转换过程分析中(火积)理论与熵理论的不同. 分析表明,两个理论的分析角度及优化输出功的前提条件是不同的. 熵产从可用能损失的角度分析热功转换过程,而(火积)理论则从热量势能消耗的角度. 当输入系统的可用能给定或者输入系统的热量及热量进、出系统的热力学力给定时,熵产最小化对应于输出功最大;对于(火积) 理论,则当输入系统的热量及热量进、出系统的温度给定时,最大(火积)损失对应于最大输出功. 同时,它们各自均有局限性. 当相应的前提条件不满足时,最大(火积)损失或最小熵产可能不与最大输出功相对应.
    Applications and limitations of the entransy theory for heat-work conversion processes are analyzed and discussed in this paper. Our analyses for the Carnot cycle show that the system entransy of the Carnot cycle is in balance, but the relationship, dG=T2dS, does not exsit between the concepts of entransy and entropy. Therefore, the concept of entropy cannot be replaced by the concept of entransy. For common thermodynamic processes, the analyses show that the present entransy theory is applicable when heat is transferred into an endoreversible thermodynamic cycle to do work. In addition, in the analyses of heat-work conversion processes, the differences between the entransy theory and entropy theory are also discussed. It is shown that the viewpoints and preconditions of the two theories for the analyses and optimizations of heat-work conversion processes are different. The viewpoint of the analyses of entropy generation is the loss of exergy, while that of the analyses of entransy is the consumption of thermal potential. When the input exergy flow of the discussed system is prescribed or the input heat flow and the corresponding thermodynamic forces of the heat flows into and out of the system are prescribed, the entropy generation minimization leads to the maximum output work. For the entransy theory, the maximum entransy loss corresponds to the maximum output work when the input heat flow and the corresponding temperatures of the heat flows into and out of the system are prescribed. Meanwhile, they both have limitations. When the corresponding preconditions are not satisfied, the maximum entransy loss or the minimum entropy generation may not correspond to the maximum output work.
    • 基金项目: 国家自然科学基金(批准号:51376101)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51376101).
    [1]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transfer 50 2545

    [2]

    Guo Z Y, Liu X B, Tao W Q, Shah R K 2010 Int. J. Heat Mass Transfer 53 2877

    [3]

    Cheng X T, Liang X G, Guo Z Y 2011 Chin. Sci. Bull. 56 847

    [4]

    Xiao Q H, Chen L G, Sun F R 2011 Chin. Sci. Bull. 56 102

    [5]

    Cheng X T, Liang X G, Xu X H 2011 Acta Phys. Sin. 60 060512(in Chinese) [程雪涛, 梁新刚, 徐向华 2011 物理学报 60 060512]

    [6]

    Xie Z H, Chen L G, Sun F R 2009 Chin. Sci. Bull. 54 4418

    [7]

    Cheng X T, Xu X H, Liang X G 2011 Acta Phys. Sin. 60 118103(in Chinese) [程雪涛, 徐向华, 梁新刚 2011 物理学报 60 118103]

    [8]

    Cheng X T, Zhang Q Z, Xu X H, Liang X G 2013 Chin. Phys. B 22 020503

    [9]

    Feng H J, Chen L G, Xie Z H, Sun F R 2013 Acta Phys. Sin. 62 134703(in Chinese) [冯辉君, 陈林根, 谢志辉, 孙丰瑞 2013 物理学报 62 134703]

    [10]

    Cheng X T, Xu X H, Liang X G 2011 Sci China: Tech Sci. 54 2446

    [11]

    Cheng X T, Liang X G 2011 Int. J. Heat Mass Transfer 54 269

    [12]

    Wu J, Cheng X T 2013 Int. J. Heat Mass Transfer 58 374

    [13]

    Zhou B, Cheng X T, Liang X G 2013 Chin. Phys. B 22 084401

    [14]

    Cheng X T, Liang X G 2014 Int. J. Heat Mass Transfer 76 263

    [15]

    Cheng X T, Zhang Q Z, Liang X G 2012 Appl. Therm. Eng. 38 31

    [16]

    Cheng X T, Liang X G 2012 Energy 46 386

    [17]

    Li X F, Guo J F, Xu M T, Cheng L 2011 Chin. Sci. Bull. 56 2174

    [18]

    Qian X D, Li Z X 2011 Int. J. Thermal Sci. 50 608

    [19]

    Xia S J, Chen L G, Sun F R 2009 Chin. Sci. Bull. 54 3572

    [20]

    Cheng X T, Liang X G 2012 Energy Convers. Manage. 58 163

    [21]

    Wang W H, Cheng X T, Liang X G 2013 Sci. China: Tech. Sci. 56 529

    [22]

    Chen L, Chen Q, Li Z, Guo Z Y 2009 Int. J. Heat Mass Transfer 52 4778

    [23]

    Chen L G 2012 Chin. Sci. Bull. 57 4404

    [24]

    Xia S J, Chen L G, Sun F R 2012 Sci. Iranica, Tran. C-Chemistry Chem. Eng. 19 1616

    [25]

    Wei S H, Chen L G, Sun F R 2011 Int. J. Thermal Sci. 50 1285

    [26]

    Cheng X T, Xu X H, Liang X G 2009 Sci. China Ser. E: Tech. Sci. 52 2937

    [27]

    Feng H, Chen L, Sun F 2012 Sci. China: Tech. Sci. 55 779

    [28]

    Feng H, Chen L, Xie Z, Sun F 2013 Sci. China: Tech. Sci. 56 299

    [29]

    Xu M T 2011 Energy 36 4272

    [30]

    Cheng X T, Liang X G 2012 Energy 44 964

    [31]

    Cheng X T, Liang X G 2013 Int. J. Heat Mass Transfer 64 903

    [32]

    Cheng X T, Wang W H, Liang X G 2012 Chin. Sci. Bull. 57 2934

    [33]

    Cheng X T, Liang X G 2012 Energy 47 421

    [34]

    Wang W H, Cheng X T, Liang X G 2013 Energy Convers. Manage. 68 82

    [35]

    Zhou B, Cheng X T, Liang X G 2013 Sci. China: Tech. Sci. 56 228

    [36]

    Zhou B, Cheng X T, Liang X G 2013 J. Appl. Phys. 113 124904

    [37]

    Grazzini G, Borchiellini R, Lucia U 2013 J. Non-Equilibrium Thermodynamics 38 250

    [38]

    Cheng X T, Chen Q, Hu G J, Liang X G 2013 Int. J. Heat Mass Transfer 60 180

    [39]

    Guo Z Y 2014 Energy 68 998

    [40]

    Cheng X T, Wang W H, Liang X G 2012 Sci. China Tech. Sci. 55 2847

    [41]

    Cheng X T, Liang X G 2013 Energy 56 46

    [42]

    Cheng X T, Liang X G 2013 J. Thermal Sci. Tech. 8 337

    [43]

    Cheng X T, Liang X G 2014 Int Commun Heat Mass Transfer 53 9

    [44]

    Cheng X T, Liang X G 2013 Chin. Sci. Bull. 58 4696

    [45]

    Cheng X T, Liang X G 2014 Energy Convers. Manage. 80 238

    [46]

    Wang W H, Cheng X T, Liang X G 2013 Chin. Phys. B 22 110506

    [47]

    Yang A, Chen L G, Xia S J, Sun F R 2014 Chin. Sci. Bull. 59 2031

    [48]

    Cheng X T, Liang X G 2013 Sci. China Tech. Sci. 43 943(in Chinese) [程雪涛, 梁新刚 2013 中国科学: 技术科学 43 943]

    [49]

    Ge Y L, Chen L G, Sun F R 2012 J. Energy Insitute. 85 140

    [50]

    Chen L G, Xia S J, Sun F R 2009 J Appl. Physics 105 044907

    [51]

    Chen L G, Zhang W L, Sun F R 2007 Appl. Energy 84 512

    [52]

    Cheng X T, Liang X G 2013 Energy Convers. Manage. 73 121

  • [1]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transfer 50 2545

    [2]

    Guo Z Y, Liu X B, Tao W Q, Shah R K 2010 Int. J. Heat Mass Transfer 53 2877

    [3]

    Cheng X T, Liang X G, Guo Z Y 2011 Chin. Sci. Bull. 56 847

    [4]

    Xiao Q H, Chen L G, Sun F R 2011 Chin. Sci. Bull. 56 102

    [5]

    Cheng X T, Liang X G, Xu X H 2011 Acta Phys. Sin. 60 060512(in Chinese) [程雪涛, 梁新刚, 徐向华 2011 物理学报 60 060512]

    [6]

    Xie Z H, Chen L G, Sun F R 2009 Chin. Sci. Bull. 54 4418

    [7]

    Cheng X T, Xu X H, Liang X G 2011 Acta Phys. Sin. 60 118103(in Chinese) [程雪涛, 徐向华, 梁新刚 2011 物理学报 60 118103]

    [8]

    Cheng X T, Zhang Q Z, Xu X H, Liang X G 2013 Chin. Phys. B 22 020503

    [9]

    Feng H J, Chen L G, Xie Z H, Sun F R 2013 Acta Phys. Sin. 62 134703(in Chinese) [冯辉君, 陈林根, 谢志辉, 孙丰瑞 2013 物理学报 62 134703]

    [10]

    Cheng X T, Xu X H, Liang X G 2011 Sci China: Tech Sci. 54 2446

    [11]

    Cheng X T, Liang X G 2011 Int. J. Heat Mass Transfer 54 269

    [12]

    Wu J, Cheng X T 2013 Int. J. Heat Mass Transfer 58 374

    [13]

    Zhou B, Cheng X T, Liang X G 2013 Chin. Phys. B 22 084401

    [14]

    Cheng X T, Liang X G 2014 Int. J. Heat Mass Transfer 76 263

    [15]

    Cheng X T, Zhang Q Z, Liang X G 2012 Appl. Therm. Eng. 38 31

    [16]

    Cheng X T, Liang X G 2012 Energy 46 386

    [17]

    Li X F, Guo J F, Xu M T, Cheng L 2011 Chin. Sci. Bull. 56 2174

    [18]

    Qian X D, Li Z X 2011 Int. J. Thermal Sci. 50 608

    [19]

    Xia S J, Chen L G, Sun F R 2009 Chin. Sci. Bull. 54 3572

    [20]

    Cheng X T, Liang X G 2012 Energy Convers. Manage. 58 163

    [21]

    Wang W H, Cheng X T, Liang X G 2013 Sci. China: Tech. Sci. 56 529

    [22]

    Chen L, Chen Q, Li Z, Guo Z Y 2009 Int. J. Heat Mass Transfer 52 4778

    [23]

    Chen L G 2012 Chin. Sci. Bull. 57 4404

    [24]

    Xia S J, Chen L G, Sun F R 2012 Sci. Iranica, Tran. C-Chemistry Chem. Eng. 19 1616

    [25]

    Wei S H, Chen L G, Sun F R 2011 Int. J. Thermal Sci. 50 1285

    [26]

    Cheng X T, Xu X H, Liang X G 2009 Sci. China Ser. E: Tech. Sci. 52 2937

    [27]

    Feng H, Chen L, Sun F 2012 Sci. China: Tech. Sci. 55 779

    [28]

    Feng H, Chen L, Xie Z, Sun F 2013 Sci. China: Tech. Sci. 56 299

    [29]

    Xu M T 2011 Energy 36 4272

    [30]

    Cheng X T, Liang X G 2012 Energy 44 964

    [31]

    Cheng X T, Liang X G 2013 Int. J. Heat Mass Transfer 64 903

    [32]

    Cheng X T, Wang W H, Liang X G 2012 Chin. Sci. Bull. 57 2934

    [33]

    Cheng X T, Liang X G 2012 Energy 47 421

    [34]

    Wang W H, Cheng X T, Liang X G 2013 Energy Convers. Manage. 68 82

    [35]

    Zhou B, Cheng X T, Liang X G 2013 Sci. China: Tech. Sci. 56 228

    [36]

    Zhou B, Cheng X T, Liang X G 2013 J. Appl. Phys. 113 124904

    [37]

    Grazzini G, Borchiellini R, Lucia U 2013 J. Non-Equilibrium Thermodynamics 38 250

    [38]

    Cheng X T, Chen Q, Hu G J, Liang X G 2013 Int. J. Heat Mass Transfer 60 180

    [39]

    Guo Z Y 2014 Energy 68 998

    [40]

    Cheng X T, Wang W H, Liang X G 2012 Sci. China Tech. Sci. 55 2847

    [41]

    Cheng X T, Liang X G 2013 Energy 56 46

    [42]

    Cheng X T, Liang X G 2013 J. Thermal Sci. Tech. 8 337

    [43]

    Cheng X T, Liang X G 2014 Int Commun Heat Mass Transfer 53 9

    [44]

    Cheng X T, Liang X G 2013 Chin. Sci. Bull. 58 4696

    [45]

    Cheng X T, Liang X G 2014 Energy Convers. Manage. 80 238

    [46]

    Wang W H, Cheng X T, Liang X G 2013 Chin. Phys. B 22 110506

    [47]

    Yang A, Chen L G, Xia S J, Sun F R 2014 Chin. Sci. Bull. 59 2031

    [48]

    Cheng X T, Liang X G 2013 Sci. China Tech. Sci. 43 943(in Chinese) [程雪涛, 梁新刚 2013 中国科学: 技术科学 43 943]

    [49]

    Ge Y L, Chen L G, Sun F R 2012 J. Energy Insitute. 85 140

    [50]

    Chen L G, Xia S J, Sun F R 2009 J Appl. Physics 105 044907

    [51]

    Chen L G, Zhang W L, Sun F R 2007 Appl. Energy 84 512

    [52]

    Cheng X T, Liang X G 2013 Energy Convers. Manage. 73 121

  • [1] 贺海, 杨鹏飞, 张鹏飞, 李刚, 张天才. 基于1/4波片的腔增强自发参量下转换过程中双折射效应的补偿. 物理学报, 2023, 72(12): 124203. doi: 10.7498/aps.72.20230422
    [2] 王刚, 谢志辉, 范旭东, 陈林根, 孙丰瑞. 离散发热器件基于(火积)耗散率最小和最高温度最小的构形优化比较. 物理学报, 2017, 66(20): 204401. doi: 10.7498/aps.66.204401
    [3] 杨科利. 耦合不连续系统同步转换过程中的多吸引子共存. 物理学报, 2016, 65(10): 100501. doi: 10.7498/aps.65.100501
    [4] 冯辉君, 陈林根, 谢志辉, 孙丰瑞. 基于(火积)理论的+形高导热构形通道实验研究. 物理学报, 2016, 65(2): 024401. doi: 10.7498/aps.65.024401
    [5] 舒安庆, 吴锋. 量子热声微循环的优化性能. 物理学报, 2016, 65(16): 164303. doi: 10.7498/aps.65.164303
    [6] 程雪涛, 梁新刚. 熵产最小化理论在传热和热功转换优化中的应用探讨. 物理学报, 2016, 65(18): 180503. doi: 10.7498/aps.65.180503
    [7] 于永吉, 陈薪羽, 王超, 吴春婷, 董渊, 李述涛, 金光勇. 基于MgO:APLN的多光参量振荡器实验研究及其逆转换过程演化分析. 物理学报, 2015, 64(4): 044203. doi: 10.7498/aps.64.044203
    [8] 冯辉君, 陈林根, 谢志辉, 孙丰瑞. 基于(火积)理论的轧钢加热炉壁变截面绝热层构形优化. 物理学报, 2015, 64(5): 054402. doi: 10.7498/aps.64.054402
    [9] 杨爱波, 陈林根, 谢志辉, 孙丰瑞. 矩形肋片热沉(火积)耗散率最小与最大热阻最小构形优化的比较研究. 物理学报, 2015, 64(20): 204401. doi: 10.7498/aps.64.204401
    [10] 王焕光, 吴迪, 饶中浩. 孤立系内热传导过程(火积)耗散的解析解. 物理学报, 2015, 64(24): 244401. doi: 10.7498/aps.64.244401
    [11] 冯辉君, 陈林根, 谢志辉, 孙丰瑞. 基于(火积)耗散率最小的复杂肋片对流换热构形优化. 物理学报, 2015, 64(3): 034701. doi: 10.7498/aps.64.034701
    [12] 夏少军, 陈林根, 戈延林, 孙丰瑞. 热漏对换热器(火积)耗散最小化的影响. 物理学报, 2014, 63(2): 020505. doi: 10.7498/aps.63.020505
    [13] 冯辉君, 陈林根, 谢志辉, 孙丰瑞. 基于(火积)耗散率最小的“盘点”冷却流道构形优化. 物理学报, 2013, 62(13): 134703. doi: 10.7498/aps.62.134703
    [14] 陈林根, 冯辉君, 谢志辉, 孙丰瑞. 微、纳米尺度下圆盘(火积)耗散率最小构形优化. 物理学报, 2013, 62(13): 134401. doi: 10.7498/aps.62.134401
    [15] 赵甜, 陈群. (火积)的宏观物理意义及其应用. 物理学报, 2013, 62(23): 234401. doi: 10.7498/aps.62.234401
    [16] 董源, 过增元. 非平衡热力学中传热过程熵产表达式的修正. 物理学报, 2012, 61(3): 030507. doi: 10.7498/aps.61.030507
    [17] 程雪涛, 梁新刚, 徐向华. (火积)的微观表述. 物理学报, 2011, 60(6): 060512. doi: 10.7498/aps.60.060512
    [18] 柳雄斌, 过增元. 换热器性能分析新方法. 物理学报, 2009, 58(7): 4766-4771. doi: 10.7498/aps.58.4766
    [19] 尹增谦, 万景瑜, 黄明强, 王慧娟. 介质阻挡放电中的能量转换过程研究. 物理学报, 2007, 56(12): 7078-7083. doi: 10.7498/aps.56.7078
    [20] 王震遐, 王 森, 胡建刚, 俞国军. 多壁碳纳米管在循环相变过程中结构变化初探. 物理学报, 2005, 54(9): 4263-4268. doi: 10.7498/aps.54.4263
计量
  • 文章访问数:  4729
  • PDF下载量:  429
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-04
  • 修回日期:  2014-06-06
  • 刊出日期:  2014-10-05

/

返回文章
返回