-
For the sensing applications based on the self-mixing interference technology of fiber laser, the self-mixing interference in the linear cavity fiber laser is theoretically analyzed through a four-mirror cavity model. The output power and frequency equation are deduced, and the behaviors of the laser under different optical feedback strengths are analyzed and simulated as well. The intensity of the laser is modulated by the length of the external cavity, and one fringe of the signal corresponds to the displacement of half wavelength of the target. Experimental setup is developed to validate the theoretical analysis. The obtained results provide both the theoretical and experimental basis for further studying self-mixing interferemetric sensing applications of fiber lasers.
-
Keywords:
- fiber laser /
- self-mixing interference /
- fiber sensing
[1] Zhang P, Tan Y D, Liu N, Wu Y, Zhang S L 2013 Opt. Lett. 38 4296
[2] Ren C, Tan Y D, Zhang S L 2009 Chin. Phys. B 18 3438
[3] Liu G, Zhang S L, Xu T, Zhu J, Li Y 2005 Acta Phys. Sin. 54 4701 (in Chinese) [刘刚, 张书练, 徐亭, 朱钧, 李岩 2005 物理学报 54 4701]
[4] Peek T H, Bolwijn P T, Alkemade C T J 1967 Amer. J. Phys. 35 820
[5] Olsson A, Tang C 1981 IEEE J. Quantum Elect. 17 1320
[6] Mork J, Tromborg B, Mark J 1992 IEEE J. Quantum Elect. 28 93
[7] Yu Y G 2000 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [禹延光 2000 博士学位论文(哈尔滨: 哈尔滨工业大学)]
[8] Wang W M, Grattan K T, Palmer A W, Boyle W J 1994 J. Lightwave. Technol. 12 1577
[9] Ovryn B, Andrews J H 1998 Opt. Lett. 23 1078
[10] Ovryn B, Andrews J H 1999 Appl. Opt. 38 1959
[11] Gouaux F, Servagent N, Bosch T 1998 Appl. Opt. 37 6684
[12] Shinohara S, Yoshida H, Ikeda H, Nishide K I, Masao S 1992 IEEE Trans. Instrum Meas. 41 40
[13] Wang W M, Boyle W J, Grattan K T, Palmer A W 1993 Appl. Opt. 32 1551
[14] Giuliani G, Norgia M, Donati S, Bosch T 2002 J. Opt. A: Pure Appl. Opt. 4 S283
[15] Liu G, Zhang S L, Zhu J 2003 Opt. Commun. 221 387
[16] Scalise L, Yu Y G, Giuliani G 2004 IEEE Trans. Instrum. Meas. 53 223
[17] Guo D M, Wang M, Tan S Q 2005 Opt. Express 13 1537
[18] Han D F, Wang M, Zhou J P 2007 IEEE Photon. Technol. Lett. 19 1398
[19] Lu L, Cao Z G, Dai J J, Xu F, Yu B L 2012 IEEE Photon. Technol. Lett. 24 392
[20] Dai X J, Wang M 2009 Opt. Express 17 16543
[21] Plantier G, Bes C, Bosch T 2005 IEEE J. Quantum. Elect. 41 1157
-
[1] Zhang P, Tan Y D, Liu N, Wu Y, Zhang S L 2013 Opt. Lett. 38 4296
[2] Ren C, Tan Y D, Zhang S L 2009 Chin. Phys. B 18 3438
[3] Liu G, Zhang S L, Xu T, Zhu J, Li Y 2005 Acta Phys. Sin. 54 4701 (in Chinese) [刘刚, 张书练, 徐亭, 朱钧, 李岩 2005 物理学报 54 4701]
[4] Peek T H, Bolwijn P T, Alkemade C T J 1967 Amer. J. Phys. 35 820
[5] Olsson A, Tang C 1981 IEEE J. Quantum Elect. 17 1320
[6] Mork J, Tromborg B, Mark J 1992 IEEE J. Quantum Elect. 28 93
[7] Yu Y G 2000 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [禹延光 2000 博士学位论文(哈尔滨: 哈尔滨工业大学)]
[8] Wang W M, Grattan K T, Palmer A W, Boyle W J 1994 J. Lightwave. Technol. 12 1577
[9] Ovryn B, Andrews J H 1998 Opt. Lett. 23 1078
[10] Ovryn B, Andrews J H 1999 Appl. Opt. 38 1959
[11] Gouaux F, Servagent N, Bosch T 1998 Appl. Opt. 37 6684
[12] Shinohara S, Yoshida H, Ikeda H, Nishide K I, Masao S 1992 IEEE Trans. Instrum Meas. 41 40
[13] Wang W M, Boyle W J, Grattan K T, Palmer A W 1993 Appl. Opt. 32 1551
[14] Giuliani G, Norgia M, Donati S, Bosch T 2002 J. Opt. A: Pure Appl. Opt. 4 S283
[15] Liu G, Zhang S L, Zhu J 2003 Opt. Commun. 221 387
[16] Scalise L, Yu Y G, Giuliani G 2004 IEEE Trans. Instrum. Meas. 53 223
[17] Guo D M, Wang M, Tan S Q 2005 Opt. Express 13 1537
[18] Han D F, Wang M, Zhou J P 2007 IEEE Photon. Technol. Lett. 19 1398
[19] Lu L, Cao Z G, Dai J J, Xu F, Yu B L 2012 IEEE Photon. Technol. Lett. 24 392
[20] Dai X J, Wang M 2009 Opt. Express 17 16543
[21] Plantier G, Bes C, Bosch T 2005 IEEE J. Quantum. Elect. 41 1157
计量
- 文章访问数: 7299
- PDF下载量: 648
- 被引次数: 0