搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光纤激光器自混合干涉效应研究

郝辉 夏巍 王鸣 郭冬梅 倪小琦

引用本文:
Citation:

光纤激光器自混合干涉效应研究

郝辉, 夏巍, 王鸣, 郭冬梅, 倪小琦

Self-mixing interference effect based on fiber laser

Hao Hui, Xia Wei, Wang Ming, Guo Dong-Mei, Ni Xiao-Qi
PDF
导出引用
  • 针对光纤激光器自混合干涉传感应用, 研究了光纤激光器自混合干涉特性, 运用四镜法布里-珀罗腔模型对掺铒线形腔光纤激光器自混合干涉效应进行了理论分析, 对不同反馈水平下的自混合干涉信号进行了数值模拟, 获得了光反馈条件下光纤激光器输出特性. 外腔长度的改变会调制激光器的输出强度, 外腔长度变化半个波长, 对应一个干涉条纹, 弱反馈条件下, 由反馈引起的激光器的频率变化可以忽略. 设计了基于光纤激光器的自混合干涉实验, 实验结果和理论分析相符合. 此研究结果为进一步开展光纤激光器的自混合干涉传感应用研究奠定了理论与实验基础.
    For the sensing applications based on the self-mixing interference technology of fiber laser, the self-mixing interference in the linear cavity fiber laser is theoretically analyzed through a four-mirror cavity model. The output power and frequency equation are deduced, and the behaviors of the laser under different optical feedback strengths are analyzed and simulated as well. The intensity of the laser is modulated by the length of the external cavity, and one fringe of the signal corresponds to the displacement of half wavelength of the target. Experimental setup is developed to validate the theoretical analysis. The obtained results provide both the theoretical and experimental basis for further studying self-mixing interferemetric sensing applications of fiber lasers.
    • 基金项目: 国家自然科学基金(批准号:91123015,51405240)、高等学校博士学科点专项科研基金(批准号:20113207110004)和江苏省自然科学基金(批准号:BK20140925)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91123015, 51405240), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20113207110004), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20140925).
    [1]

    Zhang P, Tan Y D, Liu N, Wu Y, Zhang S L 2013 Opt. Lett. 38 4296

    [2]

    Ren C, Tan Y D, Zhang S L 2009 Chin. Phys. B 18 3438

    [3]

    Liu G, Zhang S L, Xu T, Zhu J, Li Y 2005 Acta Phys. Sin. 54 4701 (in Chinese) [刘刚, 张书练, 徐亭, 朱钧, 李岩 2005 物理学报 54 4701]

    [4]

    Peek T H, Bolwijn P T, Alkemade C T J 1967 Amer. J. Phys. 35 820

    [5]

    Olsson A, Tang C 1981 IEEE J. Quantum Elect. 17 1320

    [6]

    Mork J, Tromborg B, Mark J 1992 IEEE J. Quantum Elect. 28 93

    [7]

    Yu Y G 2000 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [禹延光 2000 博士学位论文(哈尔滨: 哈尔滨工业大学)]

    [8]

    Wang W M, Grattan K T, Palmer A W, Boyle W J 1994 J. Lightwave. Technol. 12 1577

    [9]

    Ovryn B, Andrews J H 1998 Opt. Lett. 23 1078

    [10]

    Ovryn B, Andrews J H 1999 Appl. Opt. 38 1959

    [11]

    Gouaux F, Servagent N, Bosch T 1998 Appl. Opt. 37 6684

    [12]

    Shinohara S, Yoshida H, Ikeda H, Nishide K I, Masao S 1992 IEEE Trans. Instrum Meas. 41 40

    [13]

    Wang W M, Boyle W J, Grattan K T, Palmer A W 1993 Appl. Opt. 32 1551

    [14]

    Giuliani G, Norgia M, Donati S, Bosch T 2002 J. Opt. A: Pure Appl. Opt. 4 S283

    [15]

    Liu G, Zhang S L, Zhu J 2003 Opt. Commun. 221 387

    [16]

    Scalise L, Yu Y G, Giuliani G 2004 IEEE Trans. Instrum. Meas. 53 223

    [17]

    Guo D M, Wang M, Tan S Q 2005 Opt. Express 13 1537

    [18]

    Han D F, Wang M, Zhou J P 2007 IEEE Photon. Technol. Lett. 19 1398

    [19]

    Lu L, Cao Z G, Dai J J, Xu F, Yu B L 2012 IEEE Photon. Technol. Lett. 24 392

    [20]

    Dai X J, Wang M 2009 Opt. Express 17 16543

    [21]

    Plantier G, Bes C, Bosch T 2005 IEEE J. Quantum. Elect. 41 1157

  • [1]

    Zhang P, Tan Y D, Liu N, Wu Y, Zhang S L 2013 Opt. Lett. 38 4296

    [2]

    Ren C, Tan Y D, Zhang S L 2009 Chin. Phys. B 18 3438

    [3]

    Liu G, Zhang S L, Xu T, Zhu J, Li Y 2005 Acta Phys. Sin. 54 4701 (in Chinese) [刘刚, 张书练, 徐亭, 朱钧, 李岩 2005 物理学报 54 4701]

    [4]

    Peek T H, Bolwijn P T, Alkemade C T J 1967 Amer. J. Phys. 35 820

    [5]

    Olsson A, Tang C 1981 IEEE J. Quantum Elect. 17 1320

    [6]

    Mork J, Tromborg B, Mark J 1992 IEEE J. Quantum Elect. 28 93

    [7]

    Yu Y G 2000 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [禹延光 2000 博士学位论文(哈尔滨: 哈尔滨工业大学)]

    [8]

    Wang W M, Grattan K T, Palmer A W, Boyle W J 1994 J. Lightwave. Technol. 12 1577

    [9]

    Ovryn B, Andrews J H 1998 Opt. Lett. 23 1078

    [10]

    Ovryn B, Andrews J H 1999 Appl. Opt. 38 1959

    [11]

    Gouaux F, Servagent N, Bosch T 1998 Appl. Opt. 37 6684

    [12]

    Shinohara S, Yoshida H, Ikeda H, Nishide K I, Masao S 1992 IEEE Trans. Instrum Meas. 41 40

    [13]

    Wang W M, Boyle W J, Grattan K T, Palmer A W 1993 Appl. Opt. 32 1551

    [14]

    Giuliani G, Norgia M, Donati S, Bosch T 2002 J. Opt. A: Pure Appl. Opt. 4 S283

    [15]

    Liu G, Zhang S L, Zhu J 2003 Opt. Commun. 221 387

    [16]

    Scalise L, Yu Y G, Giuliani G 2004 IEEE Trans. Instrum. Meas. 53 223

    [17]

    Guo D M, Wang M, Tan S Q 2005 Opt. Express 13 1537

    [18]

    Han D F, Wang M, Zhou J P 2007 IEEE Photon. Technol. Lett. 19 1398

    [19]

    Lu L, Cao Z G, Dai J J, Xu F, Yu B L 2012 IEEE Photon. Technol. Lett. 24 392

    [20]

    Dai X J, Wang M 2009 Opt. Express 17 16543

    [21]

    Plantier G, Bes C, Bosch T 2005 IEEE J. Quantum. Elect. 41 1157

  • [1] 刘昱, 任国斌, 靳文星, 吴越, 杨宇光, 简水生. 基于模场自积增强检测的光纤声光旋转传感器. 物理学报, 2018, 67(1): 014208. doi: 10.7498/aps.67.20171525
    [2] 李政颖, 周磊, 孙文丰, 李子墨, 王加琪, 郭会勇, 王洪海. 基于色散效应的光纤光栅高速高精度解调方法研究. 物理学报, 2017, 66(1): 014206. doi: 10.7498/aps.66.014206
    [3] 董永康, 周登望, 滕雷, 姜桃飞, 陈曦. 布里渊动态光栅原理及其在光纤传感中的应用. 物理学报, 2017, 66(7): 075201. doi: 10.7498/aps.66.075201
    [4] 王闵, 刘复飞, 周贤, 戴玉堂, 杨明红. 基于光纤微结构加工和敏感材料物理融合的光纤传感技术. 物理学报, 2017, 66(7): 070703. doi: 10.7498/aps.66.070703
    [5] 赵勇, 蔡露, 李雪刚, 吕日清. 基于酒精与磁流体填充的单模-空芯-单模光纤结构温度磁场双参数传感器. 物理学报, 2017, 66(7): 070601. doi: 10.7498/aps.66.070601
    [6] 刘铁根, 于哲, 江俊峰, 刘琨, 张学智, 丁振扬, 王双, 胡浩丰, 韩群, 张红霞, 李志宏. 分立式与分布式光纤传感关键技术研究进展. 物理学报, 2017, 66(7): 070705. doi: 10.7498/aps.66.070705
    [7] 何祖源, 刘庆文, 陈嘉庚. 面向地壳形变观测的超高分辨率光纤应变传感系统. 物理学报, 2017, 66(7): 074208. doi: 10.7498/aps.66.074208
    [8] 杨易, 徐贲, 刘亚铭, 李萍, 王东宁, 赵春柳. 基于游标效应的增敏型光纤法布里-珀罗干涉仪温度传感器. 物理学报, 2017, 66(9): 094205. doi: 10.7498/aps.66.094205
    [9] 王婷婷, 葛益娴, 常建华, 柯炜, 王鸣. 基于椭球封闭空气腔的光纤复合法布里-珀罗结构折射率传感特性研究. 物理学报, 2014, 63(24): 240701. doi: 10.7498/aps.63.240701
    [10] 杨珅, 荣强周, 孙浩, 张菁, 梁磊, 徐琴芳, 詹苏昌, 杜彦英, 冯定一, 乔学光, 忽满利. 基于Michelson干涉仪的高灵敏度光纤高温探针传感器. 物理学报, 2013, 62(8): 084218. doi: 10.7498/aps.62.084218
    [11] 韩旭, 冯国英, 武传龙, 姜东升, 周寿桓. 掺镱光纤激光器自脉冲与自脉冲内的自锁模研究. 物理学报, 2012, 61(11): 114204. doi: 10.7498/aps.61.114204
    [12] 陈伟, 孟洲, 周会娟, 罗洪. 远程干涉型光纤传感系统的非线性相位噪声分析. 物理学报, 2012, 61(18): 184210. doi: 10.7498/aps.61.184210
    [13] 任广军, 魏臻, 姚建铨. 调Q脉冲保偏光纤激光器的研究. 物理学报, 2009, 58(2): 941-945. doi: 10.7498/aps.58.941
    [14] 朱涛, 宋韵, 饶云江, 朱永. CO2激光写入旋转折变型长周期光纤光栅的制作及理论分析. 物理学报, 2009, 58(7): 4738-4745. doi: 10.7498/aps.58.4738
    [15] 王建明, 段开椋, 王屹山. 两光纤激光器相干合成的实验研究. 物理学报, 2008, 57(9): 5627-5631. doi: 10.7498/aps.57.5627
    [16] 任广军, 张 强, 王 鹏, 姚建铨. 掺钕保偏光纤激光器的研究. 物理学报, 2007, 56(7): 3917-3923. doi: 10.7498/aps.56.3917
    [17] 朱 涛, 饶云江, 莫秋菊, 王久玲. 高频CO2激光脉冲写入超长周期光纤光栅特性研究. 物理学报, 2007, 56(9): 5287-5292. doi: 10.7498/aps.56.5287
    [18] 郭文刚, 杨秀峰, 罗绍均, 李勇男, 涂成厚, 吕福云, 王宏杰, 李恩邦, 吕 超. 基于激光瞬态特性的气体浓度光纤传感器. 物理学报, 2007, 56(1): 308-312. doi: 10.7498/aps.56.308
    [19] 朱 涛, 饶云江, 莫秋菊. 基于超长周期光纤光栅的高灵敏度扭曲传感器. 物理学报, 2006, 55(1): 249-253. doi: 10.7498/aps.55.249
    [20] 乔学光, 贾振安, 傅海威, 李 明, 周 红. 光纤光栅温度传感理论与实验. 物理学报, 2004, 53(2): 494-497. doi: 10.7498/aps.53.494
计量
  • 文章访问数:  7299
  • PDF下载量:  648
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-27
  • 修回日期:  2014-07-10
  • 刊出日期:  2014-12-05

/

返回文章
返回