搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

短期风速时间序列混沌特性分析及预测

田中大 李树江 王艳红 高宪文

引用本文:
Citation:

短期风速时间序列混沌特性分析及预测

田中大, 李树江, 王艳红, 高宪文

Chaotic characteristics analysis and prediction for short-term wind speed time series

Tian Zhong-Da, Li Shu-Jiang, Wang Yan-Hong, Gao Xian-Wen
PDF
导出引用
  • 针对短期风速时间序列的预测问题进行了研究. 首先通过0-1混沌测试法确定短期风速时间序列具有混沌特性. 采用相空间重构技术, 利用C-C算法确定延迟时间, G-P 算法确定嵌入维数. 然后提出一种参数在线修正的最小二乘支持向量机预测模型, 采用改进的粒子群算法进行预测模型中参数的优化. 最后通过仿真对比实验表明提出的预测方法在预测精度、预测误差、预测效果方面都要优于其他常见的预测方法, 证明该预测方法是有效的.
    A short-term wind speed time series prediction is studied. First, 0-1 test method for chaos is used to identify the short-term wind speed time series that has chaotic characteristics. Through phase space reconstruction, the delay time is determined by using C-C algorithm; and the embedding dimension is determined by using G-P algorithm. Then a least square support vector machine with parameters online modified is proposed, so that an improved particle swarm optimization algorithm may be used for the prediction of parameters optimization. Simulation experiment shows that the present method for its prediction accuracy, prediction error, and prediction effect is better than other prediction methods. Thus the proposed prediction method is effective, and feasible.
    • 基金项目: 国家自然科学基金重点项目(批准号: 61034005)资助的课题.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 61034005).
    [1]

    Xiu C B, Liu X T, Zhang X, Yu T T 2013 Power System Protection and Control 41 14 (in Chinese) [修春波, 刘新婷, 张欣, 于婷婷 2013 电力系统保护与控制 41 14]

    [2]

    Yang X Y, Sun B J, Zhang X F, Li L X 2012 Proc. the CSEE 32 35 (in Chinese) [杨锡运, 孙宝君, 张新房, 李利霞 2012 中国电机工程学报 32 35]

    [3]

    Ma L, Benoudjit N 2011 Appl. Energ. 88 2463

    [4]

    Ma L, Luan S Y, Jiang C W, Liu H L, Zhang Y 2009 Renew. Sustain. Energy Rev. 13 915

    [5]

    Pelikán E, Eben K, Resler J, Juru P, Krc P, Brabec M, Brabec T, Musilek P 2010 9th Conference on Environment and Electrical Engineering (Piscataway, NJ: IEEE) p45

    [6]

    Cuo L, Zhang Y X, Wang Q C 2013 J. Climate 26 85

    [7]

    Erdem E, Shi J 2011 Appl. Energ. 88 1405

    [8]

    Jiang J L, Lin G M 2008 Control Theory Appl. 25 374 (in Chinese) [蒋金良, 林广明 2008 控制理论与应用 25 374]

    [9]

    Liu H, Tian H Q, Li Y F 2012 Appl. Energ. 98 415

    [10]

    Li H J, Liu Y N, Wei Z N, Li X L, Cheung K W, Sun Y H, Sun G Q 2013 Electr. Power Autom. Equip. 33 28 (in Chinese) [李彗杰, 刘亚男, 卫志农, 李晓露, Kwok W Cheung, 孙永辉, 孙国强 2013 电力自动化设备 33 28]

    [11]

    Wang Y, Wu D L, Guo C X, Wu Q H, Qian W Z, Yang J 2010 IEEE PES General Meeting (Piscataway, NJ: IEEE) p1

    [12]

    Li X, Wang X, Zheng Y H, Li L X, Zhou L D, Sheng X K 2014 International Conference on Renewable Energy and Environmental Technology (Zurich-Durnten: Trans Tech) p1825

    [13]

    Zeng J, Zhang H 2011 Acta Energiae Solaris Sin. 32 296 (in Chinese) [曾杰, 张华 2011 太阳能学报 32 296]

    [14]

    Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, Kallos G 2008 J. Wind Eng. Ind. Aerodyn. 96 2348

    [15]

    Liu J B, Ding T 2012 Acta Energiae Solaris Sin. 33 1131 (in Chinese) [刘进宝, 丁涛 2012 太阳能学报 33 1131]

    [16]

    Fourati F, Chtourou M 2007 Simul. Model. Pract. Theory 15 1016

    [17]

    Xiao H F, Ding T 2011 Proceedings of the 2011 International Conference on Informatics, Cybernetics,Computer Engineering (Heidelberg: Springer) p479

    [18]

    Soman S S, Zareipour H, Malik O, Mandal P 2010 North American Power Symposium 2010 (Piscataway, NJ: IEEE) p1

    [19]

    Sheng Z 2012 Acta Phys. Sin. 61 219401 (in Chinese) [盛峥 2012 物理学报 61 219401]

    [20]

    Tahat A, Marti J, Khwaldeh A, Tahat K 2014 Chin. Phys. 23 046101

    [21]

    Li H C, Zhao J S 2005 Chin. Phys. Lett. 22 2776

    [22]

    Tang Z J, Ren F, Peng T, Wang W B 2014 Acta Phys. Sin. 63 050505 (in Chinese) [唐舟进, 任峰, 彭涛, 王文博 2014 物理学报 63 050505]

    [23]

    Wu X D, Wang Y N, Liu W T, Zhu Z Y 2011 Chin. Phys. 20 069201

    [24]

    Gottald G A, Melbourne I 2009 SIAM J. Appl. Dyn. Syst. 8 129

    [25]

    Gottald G A, Melbourne I 2009 Nonlinearity 22 1367

    [26]

    Kim H S, Eykholt R, Salas J D 1999 Physica D 127 48

    [27]

    Zhang H B, Sun X D, He Y L 2014 Acta Phys. Sin. 63 040505 (in Chinese) [张洪宾, 孙小端, 贺玉龙 2014 物理学报 63 040505]

    [28]

    Grassberger P, Procaccia I 1983 Physica D 9 189

    [29]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285

    [30]

    Suykens J A K, Vandevalle J 1999 Neural Process. Lett. 9 293

    [31]

    Kennedy J, Eberhart R 1995 Proceedings of the 1995 IEEE International Conference on Neural Networks (Piscataway, NJ: IEEE) p1942

    [32]

    Regis R G 2014 J. Comput. Sci. 5 12

    [33]

    Dong Z S, Zhang X Y, Zeng J C 2013 Trans. Can. Soc. Mech. Eng. 37 1189

    [34]

    Letting L K, Munda J L, Hamam Y 2012 Solar Energ. 86 1689

  • [1]

    Xiu C B, Liu X T, Zhang X, Yu T T 2013 Power System Protection and Control 41 14 (in Chinese) [修春波, 刘新婷, 张欣, 于婷婷 2013 电力系统保护与控制 41 14]

    [2]

    Yang X Y, Sun B J, Zhang X F, Li L X 2012 Proc. the CSEE 32 35 (in Chinese) [杨锡运, 孙宝君, 张新房, 李利霞 2012 中国电机工程学报 32 35]

    [3]

    Ma L, Benoudjit N 2011 Appl. Energ. 88 2463

    [4]

    Ma L, Luan S Y, Jiang C W, Liu H L, Zhang Y 2009 Renew. Sustain. Energy Rev. 13 915

    [5]

    Pelikán E, Eben K, Resler J, Juru P, Krc P, Brabec M, Brabec T, Musilek P 2010 9th Conference on Environment and Electrical Engineering (Piscataway, NJ: IEEE) p45

    [6]

    Cuo L, Zhang Y X, Wang Q C 2013 J. Climate 26 85

    [7]

    Erdem E, Shi J 2011 Appl. Energ. 88 1405

    [8]

    Jiang J L, Lin G M 2008 Control Theory Appl. 25 374 (in Chinese) [蒋金良, 林广明 2008 控制理论与应用 25 374]

    [9]

    Liu H, Tian H Q, Li Y F 2012 Appl. Energ. 98 415

    [10]

    Li H J, Liu Y N, Wei Z N, Li X L, Cheung K W, Sun Y H, Sun G Q 2013 Electr. Power Autom. Equip. 33 28 (in Chinese) [李彗杰, 刘亚男, 卫志农, 李晓露, Kwok W Cheung, 孙永辉, 孙国强 2013 电力自动化设备 33 28]

    [11]

    Wang Y, Wu D L, Guo C X, Wu Q H, Qian W Z, Yang J 2010 IEEE PES General Meeting (Piscataway, NJ: IEEE) p1

    [12]

    Li X, Wang X, Zheng Y H, Li L X, Zhou L D, Sheng X K 2014 International Conference on Renewable Energy and Environmental Technology (Zurich-Durnten: Trans Tech) p1825

    [13]

    Zeng J, Zhang H 2011 Acta Energiae Solaris Sin. 32 296 (in Chinese) [曾杰, 张华 2011 太阳能学报 32 296]

    [14]

    Louka P, Galanis G, Siebert N, Kariniotakis G, Katsafados P, Pytharoulis I, Kallos G 2008 J. Wind Eng. Ind. Aerodyn. 96 2348

    [15]

    Liu J B, Ding T 2012 Acta Energiae Solaris Sin. 33 1131 (in Chinese) [刘进宝, 丁涛 2012 太阳能学报 33 1131]

    [16]

    Fourati F, Chtourou M 2007 Simul. Model. Pract. Theory 15 1016

    [17]

    Xiao H F, Ding T 2011 Proceedings of the 2011 International Conference on Informatics, Cybernetics,Computer Engineering (Heidelberg: Springer) p479

    [18]

    Soman S S, Zareipour H, Malik O, Mandal P 2010 North American Power Symposium 2010 (Piscataway, NJ: IEEE) p1

    [19]

    Sheng Z 2012 Acta Phys. Sin. 61 219401 (in Chinese) [盛峥 2012 物理学报 61 219401]

    [20]

    Tahat A, Marti J, Khwaldeh A, Tahat K 2014 Chin. Phys. 23 046101

    [21]

    Li H C, Zhao J S 2005 Chin. Phys. Lett. 22 2776

    [22]

    Tang Z J, Ren F, Peng T, Wang W B 2014 Acta Phys. Sin. 63 050505 (in Chinese) [唐舟进, 任峰, 彭涛, 王文博 2014 物理学报 63 050505]

    [23]

    Wu X D, Wang Y N, Liu W T, Zhu Z Y 2011 Chin. Phys. 20 069201

    [24]

    Gottald G A, Melbourne I 2009 SIAM J. Appl. Dyn. Syst. 8 129

    [25]

    Gottald G A, Melbourne I 2009 Nonlinearity 22 1367

    [26]

    Kim H S, Eykholt R, Salas J D 1999 Physica D 127 48

    [27]

    Zhang H B, Sun X D, He Y L 2014 Acta Phys. Sin. 63 040505 (in Chinese) [张洪宾, 孙小端, 贺玉龙 2014 物理学报 63 040505]

    [28]

    Grassberger P, Procaccia I 1983 Physica D 9 189

    [29]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285

    [30]

    Suykens J A K, Vandevalle J 1999 Neural Process. Lett. 9 293

    [31]

    Kennedy J, Eberhart R 1995 Proceedings of the 1995 IEEE International Conference on Neural Networks (Piscataway, NJ: IEEE) p1942

    [32]

    Regis R G 2014 J. Comput. Sci. 5 12

    [33]

    Dong Z S, Zhang X Y, Zeng J C 2013 Trans. Can. Soc. Mech. Eng. 37 1189

    [34]

    Letting L K, Munda J L, Hamam Y 2012 Solar Energ. 86 1689

  • [1] 梅英, 谭冠政, 刘振焘, 武鹤. 基于大脑情感学习模型和自适应遗传算法的混沌时间序列预测. 物理学报, 2018, 67(8): 080502. doi: 10.7498/aps.67.20172104
    [2] 李军, 李大超. 基于优化核极限学习机的风电功率时间序列预测. 物理学报, 2016, 65(13): 130501. doi: 10.7498/aps.65.130501
    [3] 李瑞国, 张宏立, 范文慧, 王雅. 基于改进教学优化算法的Hermite正交基神经网络混沌时间序列预测. 物理学报, 2015, 64(20): 200506. doi: 10.7498/aps.64.200506
    [4] 王新迎, 韩敏. 多元混沌时间序列的多核极端学习机建模预测. 物理学报, 2015, 64(7): 070504. doi: 10.7498/aps.64.070504
    [5] 张玉梅, 吴晓军, 白树林. 交通流量序列混沌特性分析及DFPSOVF预测模型. 物理学报, 2013, 62(19): 190509. doi: 10.7498/aps.62.190509
    [6] 张文专, 龙文, 焦建军. 基于差分进化算法的混沌时间序列预测模型参数组合优化. 物理学报, 2012, 61(22): 220506. doi: 10.7498/aps.61.220506
    [7] 姚天亮, 刘海峰, 许建良, 李伟锋. 基于最大Lyapunov指数不变性的混沌时间序列噪声水平估计. 物理学报, 2012, 61(6): 060503. doi: 10.7498/aps.61.060503
    [8] 李军, 张友鹏. 基于高斯过程的混沌时间序列单步与多步预测. 物理学报, 2011, 60(7): 070513. doi: 10.7498/aps.60.070513
    [9] 李鹤, 杨周, 张义民, 闻邦椿. 基于径向基神经网络预测的混沌时间序列嵌入维数估计方法. 物理学报, 2011, 60(7): 070512. doi: 10.7498/aps.60.070512
    [10] 张春涛, 马千里, 彭宏. 基于信息熵优化相空间重构参数的混沌时间序列预测. 物理学报, 2010, 59(11): 7623-7629. doi: 10.7498/aps.59.7623
    [11] 董昭, 李翔. 离散时间序列的网络模体分析. 物理学报, 2010, 59(3): 1600-1607. doi: 10.7498/aps.59.1600
    [12] 修春波, 徐勐. 基于混沌算子网络的时间序列多步预测研究. 物理学报, 2010, 59(11): 7650-7656. doi: 10.7498/aps.59.7650
    [13] 马千里, 郑启伦, 彭宏, 覃姜维. 基于模糊边界模块化神经网络的混沌时间序列预测. 物理学报, 2009, 58(3): 1410-1419. doi: 10.7498/aps.58.1410
    [14] 杨永锋, 任兴民, 秦卫阳, 吴亚锋, 支希哲. 基于EMD方法的混沌时间序列预测. 物理学报, 2008, 57(10): 6139-6144. doi: 10.7498/aps.57.6139
    [15] 王永生, 孙 瑾, 王昌金, 范洪达. 变参数混沌时间序列的神经网络预测研究. 物理学报, 2008, 57(10): 6120-6131. doi: 10.7498/aps.57.6120
    [16] 张军峰, 胡寿松. 基于一种新型聚类算法的RBF神经网络混沌时间序列预测. 物理学报, 2007, 56(2): 713-719. doi: 10.7498/aps.56.713
    [17] 贺 涛, 周正欧. 基于分形自仿射的混沌时间序列预测. 物理学报, 2007, 56(2): 693-700. doi: 10.7498/aps.56.693
    [18] 闫 华, 魏 平, 肖先赐. 基于Bernstein多项式的自适应混沌时间序列预测算法. 物理学报, 2007, 56(9): 5111-5118. doi: 10.7498/aps.56.5111
    [19] 叶美盈, 汪晓东, 张浩然. 基于在线最小二乘支持向量机回归的混沌时间序列预测. 物理学报, 2005, 54(6): 2568-2573. doi: 10.7498/aps.54.2568
    [20] 李 军, 刘君华. 一种新型广义RBF神经网络在混沌时间序列预测中的研究. 物理学报, 2005, 54(10): 4569-4577. doi: 10.7498/aps.54.4569
计量
  • 文章访问数:  8130
  • PDF下载量:  936
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-30
  • 修回日期:  2014-08-15
  • 刊出日期:  2015-02-05

/

返回文章
返回