搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预先合成量子点组装制备高效量子点太阳电池

李文杰 钟新华

引用本文:
Citation:

预先合成量子点组装制备高效量子点太阳电池

李文杰, 钟新华

Pre-synthesized quantum dot deposition approach to obtain high efficient quantum dot solar cells

Li Wen-Jie, Zhong Xin-Hua
PDF
导出引用
  • 量子点太阳电池现已成为极具潜力的“第三代” 光伏器件, 其优点体现在材料成本低廉, 制备工艺简便, 以及其敏化剂特有的多激子效应(MEG) 潜能和吸光范围可方便调节等方面. 但是与染料分子敏化剂相比, 量子点敏化剂粒径更大、表面缺乏具有与TiO2结合的官能团, 这导致其在TiO2介孔中渗透阻力大、难以在TiO2表面吸附沉积, 所以量子点沉积手段在电池组装过程中尤为重要. 本文综述了电池组装过程中量子点的沉积方法, 分类阐述了直接生长量子点方法: 化学浴沉积(CBD)和连续离子层吸附生长(SILAR), 以及采用预先合成量子点的沉积方法: 连接分子辅助法(LA)、直接吸附法(DA)和电泳沉积(EPD)方法, 陈述了各沉积方法的发展过程及相应电池性能的改善, 对比了这些沉积方法的优缺点. 突出介绍了预先合成量子点的沉积方法, 特别是近年来不断优化而凸显优势的连接分子辅助法(LA). 总结了此方法快速、均匀沉积以及实现器件高性能的特点, 介绍了此方法沉积表面缺陷更少、结构更完善、材料更“绿色化”的量子点敏化剂的最新研究成果.
    Quantum dot sensitized solar cells (QDSCs) appear to be one of the promising photovoltaic candidates, due to the lower cost of obtaining materials and assembling processes, as well as the advantages of their QD sensitizers which exhibit properties of tailoring the absorbance spectrum to near-infrared (NIR) regions, the multiple exciton generation (MEG), hot electron extraction, etc. However, the difficulty of QDs penetrating into TiO2 mesoporous film remains to be an obstacle for the development of QDSCs, which comes from (1) their larger size (1-10 nm) compared with dye molecules, (2) steric hindrance from the long chain organic ligands on the surface, and (3) the lack of terminal functional group of the ligand with affinity to TiO2. These issues imply the importance of implementing an efficient QD deposition method in the fabrication process. Based on summarizing the advantages and shortcomings, this review demonstrates the development of the QD deposition approaches in direct growth deposition methods: the chemical bath deposition (CBD) method, the successive ionic layer adsorption and reaction (SILAR) method, and the pre-synthesized QD deposition methods: linker-assisted deposition (LA), direct absorption (DA) and electrophoretic deposition (EPD). As an overall comparison to be taken for all these deposition approaches, the pre-synthesized QD deposition method has outperformed the direct growth deposition method due to the use of pre-synthesized high quality QD sensitizers for better performance in surface chemistry. Especially, the LA approach in this method exhibits its excellence of fast and uniform QD deposition with high coverage, as well as in building high efficiency QDSC devices. Specifically, the improved structure of the sensitizers such as the inverted type-I, type-II core/shell structures and alloyed configuration through surface ion-exchange, has been employed to boost the charge injection and depress the charge recombination, benefited from LA pre-synthesized QDs deposition method. The advantages of the LA method are fully illustrated by the examples of the most recent work in the achievement of reaching the record efficiency of QDSCs. Finally, outlooks have been given on possible approaches to realize further improvement of fabricating the QDSCs with excellent performance at higher levels.
    • 基金项目: 国家自然科学基金(批准号: 21175043) 和上海市科委 (批准号: 11JC1403100, 12ZR1407700)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21175043), and the Science and Technology Commission of Shanghai Municipality of China (Grant Nos. 11JC1403100, 12ZR1407700).
    [1]

    Kamat P V 2013 J. Phys. Chem. Lett. 4 908

    [2]

    Kamat P V, Tvrdy K, Baker D R, Radich J G 2010 Chem. Rev. 110 6664

    [3]

    Bai Y, Mora-Sero I, De Angelis F, Bisquert J, Wang P 2014 Chem. Rev. 114 10095

    [4]

    Kramer I J, Sargent E H 2014 Chem. Rev. 114 863

    [5]

    Hodes G 2008 J. Phys. Chem. C 112 17778

    [6]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897

    [7]

    Hetsch F, Xu X Q, Wang H K, Kershaw S V, Rogach A L 2011 J. Phys. Chem. Lett. 2 1879

    [8]

    Kamat P V 2008 J. Phys. Chem. C 112 18737

    [9]

    Kramer I J, Sargent E H 2011 ACS Nano 5 8506

    [10]

    Tada H, Fujishima M, Kobayashi H 2011 Chem. Soc. Rev. 40 4232

    [11]

    Kershaw S V, Susha A S, Rogach A L 2013 Chem. Soc. Rev. 42 3033

    [12]

    Ruhle S, Shalom M, Zaban A 2010 Chem. Phys. Chem. 11 2290

    [13]

    Tang J, Sargent E H 2011 Adv. Mater. 23 12

    [14]

    Semonin O E, Luther J M, Choi S, Chen H Y, Gao J, Nozik A J, Beard M C 2011 Science 334 1530

    [15]

    Yella A, Lee H W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W, Yeh C Y, Zakeeruddin S M, Grätzel M 2011 Science 334 629

    [16]

    Pan Z, Mora-Sero I, Shen Q, Zhang H, Li Y, Zhao K, Wang J, Zhong X, Bisquert J 2014 J. Am. Chem. Soc. 136 9203

    [17]

    Hod I, Zaban A 2014 Langmuir 30 7264

    [18]

    Kamat P V, Christians J A, Radich J G 2014 Langmuir 30 5716

    [19]

    Corer S, Hodes G 1994 J. Phys. Chem. 98 5338

    [20]

    Yochelis S, Hodes G 2004 Chem. Mater. 16 2740

    [21]

    Hotchandani S, Kamat P V 1992 J. Phys. Chem. 96 6834

    [22]

    Liu D, Kamat P V 1993 J. Phys. Chem. 97 10769

    [23]

    Nasr C, Kamat P V, Hotchandani S 1997 J. Electroanal. Chem. 420 201

    [24]

    Niitsoo O, Sarkar S K, Pejoux C, Ruhle S, Cahen D, Hodes G 2006 J. Photoch. Photobio. A 181 306

    [25]

    Lee Y L, Lo Y S 2009 Adv. Funct. Mater. 19 604

    [26]

    Lin S C, Lee Y L, Chang C H, Shen Y J, Yang Y M 2007 Appl. Phys. Lett. 90 143517

    [27]

    Fan S Q, Kim D, Kim J J, Jung D W, Kang S O, Ko J 2009 Electrochem. Commun. 11 1337

    [28]

    Yu X Y, Lei B X, Kuang D B, Su C Y 2011 Chem. Sci. 2 1396

    [29]

    Yan K Y, Chen W, Yang S H 2013 J. Phys. Chem. C 117 92

    [30]

    Sun W T, Yu Y, Pan H Y, Gao X F, Chen Q, Peng L M 2008 J. Am. Chem. Soc. 130 1124

    [31]

    Vogel R, Hoyer P, Weller H 1994 J. Phys. Chem. 98 3183

    [32]

    Park S, Clark B L, Keszler D A, Bender J P, Wager J F, Reynolds T A, Herman G S 2002 Science 297 65

    [33]

    Plass R, Pelet S, Krueger J, Grätzel M, Bach U 2002 J. Phys. Chem. B 106 7578

    [34]

    Lee H J, Chen P, Moon S J, Sauvage F, Sivula K, Bessho T, Gamelin D R, Comte P, Zakeeruddin S M, Seok S I, Grätzel M, Nazeeruddin M K 2009 Langmuir 25 602

    [35]

    Lee H, Wang M, Chen P, Gamelin D R, Zakeeruddin S M, Grätzel M, Nazeeruddin M K 2009 Nano Lett. 9 4221

    [36]

    Li L, Yang X, Gao J, Tian H, Zhao J, Hagfeldt A, Sun L 2011 J. Am. Chem. Soc. 133 8458

    [37]

    Baker D R, Kamat P V 2009 Adv. Funct. Mater. 19 805

    [38]

    Lee H J, Bang J, Park J, Kim S, Park S M 2010 Chem. Mater. 22 5636

    [39]

    Gonzalez-Pedro V, Xu X, Mora-Sero I, Bisquert J 2010 ACS Nano 4 5783

    [40]

    Santra P K, Kamat P V 2012 J. Am. Chem. Soc. 134 2508

    [41]

    Watson D F 2010 J. Phys. Chem. Lett. 1 2299

    [42]

    Alberoa J, Clifforda J N, Palomaresa E 2014 Coordin.Chem. Rev. 263 53

    [43]

    Zaban A, Micic O I, Gregg B A, Nozik A J 1998 Langmuir 14 3153

    [44]

    Gimenez S, Mora-Sero I, Macor L, Guijarro N, Lana-Villarreal T, Gomez R, Diguna L J, Shen Q, Toyoda T, Bisquert J 2009 Nanotechnology 20 295204

    [45]

    Islam M A, Xia Y, Telesca D A, Steigerwald M L, Herman I P 2004 Chem. Mater. 16 49

    [46]

    Islam M A, Herman I P 2002 Appl. Phys. Lett. 80 3823

    [47]

    Smith N J, Emmett K J, Rosenthal S J 2008 Appl. Phys. Lett. 93 043504

    [48]

    Brown P, Kamat P V 2008 J. Am. Chem. Soc. 130 8890

    [49]

    Salant A, Shalom M, Hod I, Faust A, Zaban A, Banin U 2010 ACS Nano 4 5962

    [50]

    Santra P K, Nair P V, George Thomas K, Kamat P V 2013 J. Phys. Chem. Lett. 4 722

    [51]

    Yu X Y, Liao J Y, Qiu K Q, Kuang D B, Su C Y 2011 ACS Nano 5 9494

    [52]

    Mann J R, Watson D F 2007 Langmuir 23 10924

    [53]

    Lee Y L, Huang B M, Chien H T 2008 Chem. Mater. 20 6903

    [54]

    Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat P V 2008 J. Am. Chem. Soc. 130 4007

    [55]

    Bang J H, Kamat P V 2009 ACS Nano 3 1467

    [56]

    Guijarro N, Lana-Villarreal T, Mora-Sero I, Bisquert J, Gomez R 2009 J. Phys. Chem. C 113 4208

    [57]

    Mora-Sero I, Gimenez S, Moehl T, Fabregat-Santiago F, Lana-Villareal T, Gomez R, Bisquert J 2008 Nanotechnology 19 424007

    [58]

    Colvin V L, Goldstein A N, Alivisatos A P 1992 J. Am. Chem. Soc. 114 5221

    [59]

    Bowen Katari J E, Colvin V L, Alivisatos A P 1994 J. Phys. Chem. 98 4109

    [60]

    Lawless D, Kapoor S, Meisel D 1995 J. Phys. Chem. 99 10329

    [61]

    Aldana J, Wang Y A, Peng X 2001 J. Am. Chem. Soc. 123 8844

    [62]

    Lee H J, Yum J H, Leventis H C, Zakeeruddin S M, Haque S A, Chen P, Seok S I, Grazel M, Nazeeruddin M K 2008 J. Phys. Chem. C 112 11600

    [63]

    Lee W, Kang S H, Min S K, Sung Y E, Han S H 2008 Electrochem. Commun. 10 1579

    [64]

    Leschkies K S, Divakar R, Basu J, Enache-Pommer E, Boercker J E, Carter C B, Kortshagen U R, Norris D J, Aydil E S 2007 Nano Lett. 7 1793

    [65]

    Hyun B R, Zhong Y W, Bartnik A C, Sun L, Abruna H D, Wise F W, Goodreau J D, Matthews J R, Leslie T M, Borrelli N F 2008 ACS Nano 2 2206

    [66]

    Lee W, Kang S H, Min S K, Sung Y E, Han S H 2008 Electrochem. Commun. 10 1579

    [67]

    Chen J, Lei W, Deng W Q 2011 Nanoscale 3 674

    [68]

    Chen J, Zhao D W, Song J L, Sun X W, Deng W Q, Liu X W, Lei W 2009 Electrochem. Commun. 11 2265

    [69]

    Sambur J B, Riha S C, Choi D, Parkinson B A 2010 Langmuir 26 4839

    [70]

    Zhang H, Cheng K, Hou Y M, Fang Z, Pan Z X, Wu W J, Hua J L, Zhong X H 2012 Chem. Commun. 48 11235

    [71]

    Liu L, Guo X, Li Y, Zhong X 2010 Inorg. Chem. 49 3768

    [72]

    Pan Z, Zhang H, Cheng K, Hou Y, Hua J, Zhong X 2012 ACS Nano 6 3982

    [73]

    Pan Z, Zhao K, Wang J, Zhang H, Feng Y, Zhong X 2013 ACS Nano 7 5215

    [74]

    Wang J, Mora-Sero I, Pan Z, Zhao K, Zhang H, Feng Y, Yang G, Zhong X, Bisquert J 2013 J. Am. Chem. Soc. 135 15913

    [75]

    Ma W, Luther J M, Zheng H, Wu Y, Alivisatos A P 2009 Nano Lett. 9 1699

    [76]

    Gonzalez-Pedro V, Sima C, Marzari G, Boix P P, Gimenez S, Shen Q, Dittrich T, Mora-Sero I 2013 Phys. Chem. Chem. Phys. 15 13835

    [77]

    Santra P K, Kamat P V 2013 J. Am. Chem. Soc. 135 877

    [78]

    Peter L M, Wijayantha K G U, Riley D J, Waggett J P 2003 J. Phys. Chem. B 107 8378

    [79]

    Ning Z J, Tian H N, Qin H Y, Zhang Q O, Agren H, Sun L C, Fu Y 2010 J. Phys. Chem. C 114 15184

    [80]

    Chang J Y, Su L F, Li C H, Chang C C, Lin J M 2012 Chem. Commun. 48 4848

    [81]

    Li T L, Lee Y L, Teng H 2012 Energy Environ. Sci. 5 5315

    [82]

    Hu X, Zhang Q, Huang X, Li D, Luo Y, Meng Q 2011 J. Mater. Chem. 21 15903

    [83]

    Luo J, Wei H, Huang Q, Hu X, Zhao H, Yu R, Li D, Luo Y, Meng Q 2013 Chem. Commun. 49 3881

    [84]

    McDaniel H, Fuke N, Makarov N S, Pietryga J M, Klimov V I 2013 Nat. Commun. 4 2887

    [85]

    McDaniel H, Fuke N, Pietryga J M, Klimov V I 2013 J. Phys. Chem. Lett. 4 355

    [86]

    Aldakov D, Lefrançois A, Reiss P 2013 J. Mater. Chem. C 1 3756

    [87]

    Allen P M, Bawendi M G 2008 J. Am. Chem. Soc. 130 9240

    [88]

    Booth M, Brown A P, Evans S D, Critchley K 2012 Chem. Mater. 24 2064

    [89]

    Qin L, Li D, Zhang Z, Wang K, Ding H, Xie R, Yang W 2012 Nanoscale 4 6360

    [90]

    Li T L, Lee Y L, Teng H S 2011 J. Mater. Chem. 21 5089

  • [1]

    Kamat P V 2013 J. Phys. Chem. Lett. 4 908

    [2]

    Kamat P V, Tvrdy K, Baker D R, Radich J G 2010 Chem. Rev. 110 6664

    [3]

    Bai Y, Mora-Sero I, De Angelis F, Bisquert J, Wang P 2014 Chem. Rev. 114 10095

    [4]

    Kramer I J, Sargent E H 2014 Chem. Rev. 114 863

    [5]

    Hodes G 2008 J. Phys. Chem. C 112 17778

    [6]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897

    [7]

    Hetsch F, Xu X Q, Wang H K, Kershaw S V, Rogach A L 2011 J. Phys. Chem. Lett. 2 1879

    [8]

    Kamat P V 2008 J. Phys. Chem. C 112 18737

    [9]

    Kramer I J, Sargent E H 2011 ACS Nano 5 8506

    [10]

    Tada H, Fujishima M, Kobayashi H 2011 Chem. Soc. Rev. 40 4232

    [11]

    Kershaw S V, Susha A S, Rogach A L 2013 Chem. Soc. Rev. 42 3033

    [12]

    Ruhle S, Shalom M, Zaban A 2010 Chem. Phys. Chem. 11 2290

    [13]

    Tang J, Sargent E H 2011 Adv. Mater. 23 12

    [14]

    Semonin O E, Luther J M, Choi S, Chen H Y, Gao J, Nozik A J, Beard M C 2011 Science 334 1530

    [15]

    Yella A, Lee H W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W, Yeh C Y, Zakeeruddin S M, Grätzel M 2011 Science 334 629

    [16]

    Pan Z, Mora-Sero I, Shen Q, Zhang H, Li Y, Zhao K, Wang J, Zhong X, Bisquert J 2014 J. Am. Chem. Soc. 136 9203

    [17]

    Hod I, Zaban A 2014 Langmuir 30 7264

    [18]

    Kamat P V, Christians J A, Radich J G 2014 Langmuir 30 5716

    [19]

    Corer S, Hodes G 1994 J. Phys. Chem. 98 5338

    [20]

    Yochelis S, Hodes G 2004 Chem. Mater. 16 2740

    [21]

    Hotchandani S, Kamat P V 1992 J. Phys. Chem. 96 6834

    [22]

    Liu D, Kamat P V 1993 J. Phys. Chem. 97 10769

    [23]

    Nasr C, Kamat P V, Hotchandani S 1997 J. Electroanal. Chem. 420 201

    [24]

    Niitsoo O, Sarkar S K, Pejoux C, Ruhle S, Cahen D, Hodes G 2006 J. Photoch. Photobio. A 181 306

    [25]

    Lee Y L, Lo Y S 2009 Adv. Funct. Mater. 19 604

    [26]

    Lin S C, Lee Y L, Chang C H, Shen Y J, Yang Y M 2007 Appl. Phys. Lett. 90 143517

    [27]

    Fan S Q, Kim D, Kim J J, Jung D W, Kang S O, Ko J 2009 Electrochem. Commun. 11 1337

    [28]

    Yu X Y, Lei B X, Kuang D B, Su C Y 2011 Chem. Sci. 2 1396

    [29]

    Yan K Y, Chen W, Yang S H 2013 J. Phys. Chem. C 117 92

    [30]

    Sun W T, Yu Y, Pan H Y, Gao X F, Chen Q, Peng L M 2008 J. Am. Chem. Soc. 130 1124

    [31]

    Vogel R, Hoyer P, Weller H 1994 J. Phys. Chem. 98 3183

    [32]

    Park S, Clark B L, Keszler D A, Bender J P, Wager J F, Reynolds T A, Herman G S 2002 Science 297 65

    [33]

    Plass R, Pelet S, Krueger J, Grätzel M, Bach U 2002 J. Phys. Chem. B 106 7578

    [34]

    Lee H J, Chen P, Moon S J, Sauvage F, Sivula K, Bessho T, Gamelin D R, Comte P, Zakeeruddin S M, Seok S I, Grätzel M, Nazeeruddin M K 2009 Langmuir 25 602

    [35]

    Lee H, Wang M, Chen P, Gamelin D R, Zakeeruddin S M, Grätzel M, Nazeeruddin M K 2009 Nano Lett. 9 4221

    [36]

    Li L, Yang X, Gao J, Tian H, Zhao J, Hagfeldt A, Sun L 2011 J. Am. Chem. Soc. 133 8458

    [37]

    Baker D R, Kamat P V 2009 Adv. Funct. Mater. 19 805

    [38]

    Lee H J, Bang J, Park J, Kim S, Park S M 2010 Chem. Mater. 22 5636

    [39]

    Gonzalez-Pedro V, Xu X, Mora-Sero I, Bisquert J 2010 ACS Nano 4 5783

    [40]

    Santra P K, Kamat P V 2012 J. Am. Chem. Soc. 134 2508

    [41]

    Watson D F 2010 J. Phys. Chem. Lett. 1 2299

    [42]

    Alberoa J, Clifforda J N, Palomaresa E 2014 Coordin.Chem. Rev. 263 53

    [43]

    Zaban A, Micic O I, Gregg B A, Nozik A J 1998 Langmuir 14 3153

    [44]

    Gimenez S, Mora-Sero I, Macor L, Guijarro N, Lana-Villarreal T, Gomez R, Diguna L J, Shen Q, Toyoda T, Bisquert J 2009 Nanotechnology 20 295204

    [45]

    Islam M A, Xia Y, Telesca D A, Steigerwald M L, Herman I P 2004 Chem. Mater. 16 49

    [46]

    Islam M A, Herman I P 2002 Appl. Phys. Lett. 80 3823

    [47]

    Smith N J, Emmett K J, Rosenthal S J 2008 Appl. Phys. Lett. 93 043504

    [48]

    Brown P, Kamat P V 2008 J. Am. Chem. Soc. 130 8890

    [49]

    Salant A, Shalom M, Hod I, Faust A, Zaban A, Banin U 2010 ACS Nano 4 5962

    [50]

    Santra P K, Nair P V, George Thomas K, Kamat P V 2013 J. Phys. Chem. Lett. 4 722

    [51]

    Yu X Y, Liao J Y, Qiu K Q, Kuang D B, Su C Y 2011 ACS Nano 5 9494

    [52]

    Mann J R, Watson D F 2007 Langmuir 23 10924

    [53]

    Lee Y L, Huang B M, Chien H T 2008 Chem. Mater. 20 6903

    [54]

    Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat P V 2008 J. Am. Chem. Soc. 130 4007

    [55]

    Bang J H, Kamat P V 2009 ACS Nano 3 1467

    [56]

    Guijarro N, Lana-Villarreal T, Mora-Sero I, Bisquert J, Gomez R 2009 J. Phys. Chem. C 113 4208

    [57]

    Mora-Sero I, Gimenez S, Moehl T, Fabregat-Santiago F, Lana-Villareal T, Gomez R, Bisquert J 2008 Nanotechnology 19 424007

    [58]

    Colvin V L, Goldstein A N, Alivisatos A P 1992 J. Am. Chem. Soc. 114 5221

    [59]

    Bowen Katari J E, Colvin V L, Alivisatos A P 1994 J. Phys. Chem. 98 4109

    [60]

    Lawless D, Kapoor S, Meisel D 1995 J. Phys. Chem. 99 10329

    [61]

    Aldana J, Wang Y A, Peng X 2001 J. Am. Chem. Soc. 123 8844

    [62]

    Lee H J, Yum J H, Leventis H C, Zakeeruddin S M, Haque S A, Chen P, Seok S I, Grazel M, Nazeeruddin M K 2008 J. Phys. Chem. C 112 11600

    [63]

    Lee W, Kang S H, Min S K, Sung Y E, Han S H 2008 Electrochem. Commun. 10 1579

    [64]

    Leschkies K S, Divakar R, Basu J, Enache-Pommer E, Boercker J E, Carter C B, Kortshagen U R, Norris D J, Aydil E S 2007 Nano Lett. 7 1793

    [65]

    Hyun B R, Zhong Y W, Bartnik A C, Sun L, Abruna H D, Wise F W, Goodreau J D, Matthews J R, Leslie T M, Borrelli N F 2008 ACS Nano 2 2206

    [66]

    Lee W, Kang S H, Min S K, Sung Y E, Han S H 2008 Electrochem. Commun. 10 1579

    [67]

    Chen J, Lei W, Deng W Q 2011 Nanoscale 3 674

    [68]

    Chen J, Zhao D W, Song J L, Sun X W, Deng W Q, Liu X W, Lei W 2009 Electrochem. Commun. 11 2265

    [69]

    Sambur J B, Riha S C, Choi D, Parkinson B A 2010 Langmuir 26 4839

    [70]

    Zhang H, Cheng K, Hou Y M, Fang Z, Pan Z X, Wu W J, Hua J L, Zhong X H 2012 Chem. Commun. 48 11235

    [71]

    Liu L, Guo X, Li Y, Zhong X 2010 Inorg. Chem. 49 3768

    [72]

    Pan Z, Zhang H, Cheng K, Hou Y, Hua J, Zhong X 2012 ACS Nano 6 3982

    [73]

    Pan Z, Zhao K, Wang J, Zhang H, Feng Y, Zhong X 2013 ACS Nano 7 5215

    [74]

    Wang J, Mora-Sero I, Pan Z, Zhao K, Zhang H, Feng Y, Yang G, Zhong X, Bisquert J 2013 J. Am. Chem. Soc. 135 15913

    [75]

    Ma W, Luther J M, Zheng H, Wu Y, Alivisatos A P 2009 Nano Lett. 9 1699

    [76]

    Gonzalez-Pedro V, Sima C, Marzari G, Boix P P, Gimenez S, Shen Q, Dittrich T, Mora-Sero I 2013 Phys. Chem. Chem. Phys. 15 13835

    [77]

    Santra P K, Kamat P V 2013 J. Am. Chem. Soc. 135 877

    [78]

    Peter L M, Wijayantha K G U, Riley D J, Waggett J P 2003 J. Phys. Chem. B 107 8378

    [79]

    Ning Z J, Tian H N, Qin H Y, Zhang Q O, Agren H, Sun L C, Fu Y 2010 J. Phys. Chem. C 114 15184

    [80]

    Chang J Y, Su L F, Li C H, Chang C C, Lin J M 2012 Chem. Commun. 48 4848

    [81]

    Li T L, Lee Y L, Teng H 2012 Energy Environ. Sci. 5 5315

    [82]

    Hu X, Zhang Q, Huang X, Li D, Luo Y, Meng Q 2011 J. Mater. Chem. 21 15903

    [83]

    Luo J, Wei H, Huang Q, Hu X, Zhao H, Yu R, Li D, Luo Y, Meng Q 2013 Chem. Commun. 49 3881

    [84]

    McDaniel H, Fuke N, Makarov N S, Pietryga J M, Klimov V I 2013 Nat. Commun. 4 2887

    [85]

    McDaniel H, Fuke N, Pietryga J M, Klimov V I 2013 J. Phys. Chem. Lett. 4 355

    [86]

    Aldakov D, Lefrançois A, Reiss P 2013 J. Mater. Chem. C 1 3756

    [87]

    Allen P M, Bawendi M G 2008 J. Am. Chem. Soc. 130 9240

    [88]

    Booth M, Brown A P, Evans S D, Critchley K 2012 Chem. Mater. 24 2064

    [89]

    Qin L, Li D, Zhang Z, Wang K, Ding H, Xie R, Yang W 2012 Nanoscale 4 6360

    [90]

    Li T L, Lee Y L, Teng H S 2011 J. Mater. Chem. 21 5089

  • [1] 刘恒, 李晔, 杜梦超, 仇鹏, 何荧峰, 宋祎萌, 卫会云, 朱晓丽, 田丰, 彭铭曾, 郑新和. AlGaN合金的原子层沉积及其在量子点敏化太阳能电池的应用. 物理学报, 2023, 72(13): 137701. doi: 10.7498/aps.72.20230113
    [2] 李晔, 王茜茜, 卫会云, 仇鹏, 何荧峰, 宋祎萌, 段彰, 申诚涛, 彭铭曾, 郑新和. 原子层沉积的超薄InN强化量子点太阳能电池的界面输运. 物理学报, 2021, 70(18): 187702. doi: 10.7498/aps.70.20210554
    [3] 何仁, 李英叶, 陈敬欣, 赵学玲, 汤欢, 张丽娜, 沈艳娇, 李锋, 杨琳, 韦德远. 三点、四点法机械性能测试建模及其在太阳电池中的应用. 物理学报, 2019, 68(20): 208801. doi: 10.7498/aps.68.20190597
    [4] 任伦, 李葵英, 崔洁圆, 赵杰. ZnSe量子点敏化纳米TiO2薄膜光电子特性研究. 物理学报, 2017, 66(6): 067301. doi: 10.7498/aps.66.067301
    [5] 张晓宇, 张丽平, 马忠权, 刘正新. 硅锗量子阱结构在硅异质结太阳电池中应用的数值模拟. 物理学报, 2016, 65(13): 138801. doi: 10.7498/aps.65.138801
    [6] 屈俊荣, 郑建邦, 王春锋, 吴广荣, 郝娟. 聚对苯乙炔MOPPV/ZnSe量子点复合材料太阳电池性能研究. 物理学报, 2013, 62(7): 078802. doi: 10.7498/aps.62.078802
    [7] 徐炜炜, 胡林华, 罗向东, 刘培生, 戴松元. 基于薄膜电极溶胶修饰的染料敏化太阳电池光电特性研究. 物理学报, 2012, 61(8): 088801. doi: 10.7498/aps.61.088801
    [8] 姜冰一, 郑建邦, 王春锋, 郝娟, 曹崇德. 基于GaAs/InAs-GaAs/ZnSe量子点太阳电池结构的优化. 物理学报, 2012, 61(13): 138801. doi: 10.7498/aps.61.138801
    [9] 陈双宏, 翁坚, 王利军, 张昌能, 黄阳, 姜年权, 戴松元. 负偏压作用下染料敏化太阳电池界面及光电性能研究. 物理学报, 2011, 60(12): 128404. doi: 10.7498/aps.60.128404
    [10] 寇东星, 刘伟庆, 胡林华, 黄阳, 戴松元, 姜年权. 电极表面改性对染料敏化太阳电池性能影响的机理研究. 物理学报, 2010, 59(8): 5857-5862. doi: 10.7498/aps.59.5857
    [11] 黄阳, 戴松元, 陈双宏, 胡林华, 孔凡太, 寇东星, 姜年权. 大面积染料敏化太阳电池的串联阻抗特性研究. 物理学报, 2010, 59(1): 643-648. doi: 10.7498/aps.59.643
    [12] 尹永琦, 李华, 马佳宁, 贺泽龙, 王选章. 多端耦合量子点分子桥的量子输运特性研究. 物理学报, 2009, 58(6): 4162-4167. doi: 10.7498/aps.58.4162
    [13] 韩晓艳, 侯国付, 魏长春, 张晓丹, 戴志华, 李贵君, 孙建, 陈新亮, 张德坤, 薛俊明, 赵颖, 耿新华. 高速沉积本征微晶硅的优化及其在太阳电池中的应用. 物理学报, 2009, 58(6): 4254-4259. doi: 10.7498/aps.58.4254
    [14] 郭 力, 梁林云, 陈 冲, 王命泰, 孔明光, 王孔嘉. 聚苯胺基固态染料敏化太阳电池中电子输运性能的研究. 物理学报, 2007, 56(7): 4270-4276. doi: 10.7498/aps.56.4270
    [15] 翁 坚, 肖尚锋, 陈双宏, 戴松元. 大面积染料敏化太阳电池的实验研究. 物理学报, 2007, 56(6): 3602-3606. doi: 10.7498/aps.56.3602
    [16] 董庆瑞. 磁场方向调制的InAs量子点分子量子比特. 物理学报, 2007, 56(9): 5436-5440. doi: 10.7498/aps.56.5436
    [17] 戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘 旭, 王孔嘉. 染料敏化纳米薄膜太阳电池实验研究. 物理学报, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [18] 曾隆月, 戴松元, 王孔嘉, 史成武, 孔凡太, 胡林华, 潘 旭. 染料敏化纳米ZnO薄膜太阳电池机理初探. 物理学报, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
    [19] 徐炜炜, 戴松元, 方霞琴, 胡林华, 孔凡太, 潘 旭, 王孔嘉. 电沉积处理与染料敏化纳米薄膜太阳电池的优化. 物理学报, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [20] 王立民, 罗莹, 马本堃. 双量子点分子的电子结构. 物理学报, 2001, 50(2): 278-286. doi: 10.7498/aps.50.278
计量
  • 文章访问数:  5749
  • PDF下载量:  1013
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-22
  • 修回日期:  2014-12-04
  • 刊出日期:  2015-02-05

/

返回文章
返回