搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SimGen(m+n=9)团簇结构和电子性质的计算研究

吴丽君 随强涛 张多 张林 祁阳

引用本文:
Citation:

SimGen(m+n=9)团簇结构和电子性质的计算研究

吴丽君, 随强涛, 张多, 张林, 祁阳

Computational study of structures and electronic properties of SimGen (m+n=9) clusters

Wu Li-Jun, Sui Qiang-Tao, Zhang Duo, Zhang Lin, Qi Yang
PDF
导出引用
  • 硅锗团簇结构与电子性质的研究对于研发新型微电子材料具有重要意义. 将遗传算法和基于密度泛函理论的紧束缚方法相结合, 研究了SimGen(m+n=9)团簇的原子堆积结构和电子性质. 计算结果发现, SimGen(m+n=9) 团簇存在两种低能原子堆积稳定构型: 带小金字塔的五边形双锥堆积和带桥位Ge原子的四面体紧密堆积. 随着团簇内锗原子数目的逐渐增加, 两种堆积结构均出现明显的转变, 其中最低能量的几何结构由单侧带相邻双金字塔的五边形双锥结构转变为双侧带相邻单金字塔的五边形双锥结构. 随着原子堆积结构的变化, 团簇内原子电荷分布及电子最高占据轨道与电子最低未占据轨道的能隙随团簇内所含硅和锗元素组分的不同呈现出明显的差异.
    The researches of the structural and electronic properties of silicon and germanium clusters are of great significance for developing novel microelectronic materials. This paper aims to study the geometric structures and electronic properties of SimGen (m+n=9) clusters by combining genetic algorithm and density functional tight binding method. The study shows that there are two low energy stable atomic stacking configurations for SimGen(m+n = 9) clusters: one is a pentagon double cone stacking two small adjacent pyramids, the other is a tetrahedron close packing with a Ge atom on a bridge. Both stacking configurations are changed greatly with gradually increasing the Ge atom number in the cluster. The shape of the lowest-energy configuration changes from the pentagon double cone stacking two adjacent pyramids on the same side into the pentagon double cone stacking two adjacent pyramids on both sides of the up and down. With this change, the electron distribution and the gap of the highest occupied molecular orbital and the lowest unoccupied molecular orbital gap are obviously dependent on the difference in components of Ge and Si elements contained.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB606403)、中央高校基本科研业务费专项资金(批准号: N110205001)和国家自然科学基金(批准号: 51171044)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB606403), the Fundamental Research Funds for the Central Universities, China (Grant No. N110205001), and the National Natural Science Foundation of China (Grant No. 51171044).
    [1]

    Liptak R W, Campbell S A, Kortshagen U 2009 Nanotechnology 20 035603

    [2]

    Morales A M, Lieber C M 1998 Science 279 208

    [3]

    Cui Y, Lieber C M 2001 Science 291 851

    [4]

    Wagner R S, Ellis W C 1964 Appl. Phys. Lett. 4 89

    [5]

    Pan Z W, Lar H, Au F C K 2000 Adv. Mater. 12 1186

    [6]

    Honing R E 1954 J. Chem. Phys. 22 1610

    [7]

    Bloomfied L A, Freeman R R, Brown W L 1985 Phys. Rev. Lett. 54 2246

    [8]

    Bloomfied L A, Geusic M E, Freeman R R, Brown W L 1985 Chem. Phys. Lett. 121 33

    [9]

    Heath J R, Liu Y, O'Brien S C, Zhang Q L, Curl R F, Tittel F K, Smalley R E 1985 J. Chem. Phys. 83 5520

    [10]

    Honea E C, Ogura A, Murray C A, Raghavachari K, Sprenger W O, Jarrold M F, Brown W L 1993 Nature 366 42

    [11]

    Arnold C C, Neumark D M 1993 J. Chem. Phys. 99 3353

    [12]

    Hunter J M, Fye L J, Jarrold M F, Bower J E 1994 Phys. Rev. Lett. 73 2063

    [13]

    Jarrold M F, Constant V A 1991 Phys. Rev. Lett. 67 2994

    [14]

    Jarrold M F, Bower J E 1992 J. Chem. Phys. 96 9180

    [15]

    Raghavachari K 1986 J. Chem. Phys. 84 5672

    [16]

    Dai Z X, Shi X Q, Zheng X H, Wang X L, Zeng Z 2007 Phys. Rev. B 75 155402

    [17]

    Aristides D Z 2001 Phys. Rev. A 64 023202

    [18]

    Zhu X L, Zeng X C 2003 J. Chem. Phys. 118 3558

    [19]

    Tsong T T 1984 Appl. Phys. Lett. 45 1149

    [20]

    Tsong T T 1984 Phys. Rev. B 30 4946

    [21]

    Yoo S, Zeng X C 2003 J. Chem. Phys. 119 1442

    [22]

    Yoo S, Zeng X C 2005 J. Chem. Phys. 123 164303

    [23]

    Yoo S, Zeng X C 2006 J. Chem. Phys. 124 054304

    [24]

    Yoo S, Zhao J J, Wang J L, Zeng X C 2004 J. Am. Chem. Soc. 126 13845

    [25]

    Yoo S, Shao N, Koehler C, Fraunhaum T, Zeng X C 2006 J. Chem. Phys. 124 164311

    [26]

    Qin W, Lu W C, Zhao L Z, Zang Q J, Wang C Z, Ho K M 2009 J. Phys.: Condens. Matter 21 455501

    [27]

    Bing D, Nguyen Q C, Fan X F, Kuo J L 2008 J. Phys. Chem. A 112 2235

    [28]

    Marim L R, Ueno L T, Machado F B C, Dal Pino Jr A 2007 Phys. Stat. Sol. B 244 3601

    [29]

    Rehman H, Springborg M, Dong Y 2009 Eur. Phys. J. D 52 39

    [30]

    Rehman H, Springborg M, Dong Y 2011 J. Phys. Chem. A 115 2005

    [31]

    Asaduzzaman A M, Springborg M 2006 Phys. Rev. B 74 165406

    [32]

    Asaduzzaman A M, Springborg M 2007 Eur. Phys. J. D 43 213

    [33]

    Porezag D, Frauenheim Th, Köhler T, Seifert G, Kaschner R 1995 Phys. Rev. B 51 12947

    [34]

    Elstner M, Porezag D, Jungnickel G, Elstner J, Haugk M, Frauenheim T, Suhai S, Seifert G 1998 Phys. Rev. B 58 7260

    [35]

    Seifert G, Porezag D, Frauenheim T 1996 Int. J. Quantum Chem. 58 185

    [36]

    Yuan Y, Cheng J L 2012 J. Chem. Phys. 137 044308

    [37]

    Ren L, Cheng L J, Feng Y, Wang X M 2012 J. Chem. Phys. 137 014309

    [38]

    Li R, Cheng L J 2012 Comput. Theor. Chem. 996 125

    [39]

    Yuan Y, Cheng J L 2013 Int. J. Quantum Chem. 113 1264

    [40]

    Li L F, Cheng L J 2013 J. Chem. Phys. 138 094312

    [41]

    Cheng L J, Yang J L 2013 J. Chem. Phys. 138 141101

    [42]

    Zhao Z Y, Yi J, Zhou D C 2014 Chin. Phys. B 23 017401

    [43]

    Bazterra V E, Ona O, Caputo M C, Ferraro M B, Fuentealba P, Facelli J C 2004 Phys. Rev. A 69 53202

    [44]

    Marin L R, Lemes M R, Dal Pino Jr A 2006 Phys. Stat. Sol. B 243 449

    [45]

    Zhao L Z, Lu W C, Qin W, Zang Q J, Wang C Z, Ho K M 2008 Chem. Phys. Lett. 455 225

    [46]

    Weber J, Alonso M I 1989 Phys. Rev. B 40 5683

  • [1]

    Liptak R W, Campbell S A, Kortshagen U 2009 Nanotechnology 20 035603

    [2]

    Morales A M, Lieber C M 1998 Science 279 208

    [3]

    Cui Y, Lieber C M 2001 Science 291 851

    [4]

    Wagner R S, Ellis W C 1964 Appl. Phys. Lett. 4 89

    [5]

    Pan Z W, Lar H, Au F C K 2000 Adv. Mater. 12 1186

    [6]

    Honing R E 1954 J. Chem. Phys. 22 1610

    [7]

    Bloomfied L A, Freeman R R, Brown W L 1985 Phys. Rev. Lett. 54 2246

    [8]

    Bloomfied L A, Geusic M E, Freeman R R, Brown W L 1985 Chem. Phys. Lett. 121 33

    [9]

    Heath J R, Liu Y, O'Brien S C, Zhang Q L, Curl R F, Tittel F K, Smalley R E 1985 J. Chem. Phys. 83 5520

    [10]

    Honea E C, Ogura A, Murray C A, Raghavachari K, Sprenger W O, Jarrold M F, Brown W L 1993 Nature 366 42

    [11]

    Arnold C C, Neumark D M 1993 J. Chem. Phys. 99 3353

    [12]

    Hunter J M, Fye L J, Jarrold M F, Bower J E 1994 Phys. Rev. Lett. 73 2063

    [13]

    Jarrold M F, Constant V A 1991 Phys. Rev. Lett. 67 2994

    [14]

    Jarrold M F, Bower J E 1992 J. Chem. Phys. 96 9180

    [15]

    Raghavachari K 1986 J. Chem. Phys. 84 5672

    [16]

    Dai Z X, Shi X Q, Zheng X H, Wang X L, Zeng Z 2007 Phys. Rev. B 75 155402

    [17]

    Aristides D Z 2001 Phys. Rev. A 64 023202

    [18]

    Zhu X L, Zeng X C 2003 J. Chem. Phys. 118 3558

    [19]

    Tsong T T 1984 Appl. Phys. Lett. 45 1149

    [20]

    Tsong T T 1984 Phys. Rev. B 30 4946

    [21]

    Yoo S, Zeng X C 2003 J. Chem. Phys. 119 1442

    [22]

    Yoo S, Zeng X C 2005 J. Chem. Phys. 123 164303

    [23]

    Yoo S, Zeng X C 2006 J. Chem. Phys. 124 054304

    [24]

    Yoo S, Zhao J J, Wang J L, Zeng X C 2004 J. Am. Chem. Soc. 126 13845

    [25]

    Yoo S, Shao N, Koehler C, Fraunhaum T, Zeng X C 2006 J. Chem. Phys. 124 164311

    [26]

    Qin W, Lu W C, Zhao L Z, Zang Q J, Wang C Z, Ho K M 2009 J. Phys.: Condens. Matter 21 455501

    [27]

    Bing D, Nguyen Q C, Fan X F, Kuo J L 2008 J. Phys. Chem. A 112 2235

    [28]

    Marim L R, Ueno L T, Machado F B C, Dal Pino Jr A 2007 Phys. Stat. Sol. B 244 3601

    [29]

    Rehman H, Springborg M, Dong Y 2009 Eur. Phys. J. D 52 39

    [30]

    Rehman H, Springborg M, Dong Y 2011 J. Phys. Chem. A 115 2005

    [31]

    Asaduzzaman A M, Springborg M 2006 Phys. Rev. B 74 165406

    [32]

    Asaduzzaman A M, Springborg M 2007 Eur. Phys. J. D 43 213

    [33]

    Porezag D, Frauenheim Th, Köhler T, Seifert G, Kaschner R 1995 Phys. Rev. B 51 12947

    [34]

    Elstner M, Porezag D, Jungnickel G, Elstner J, Haugk M, Frauenheim T, Suhai S, Seifert G 1998 Phys. Rev. B 58 7260

    [35]

    Seifert G, Porezag D, Frauenheim T 1996 Int. J. Quantum Chem. 58 185

    [36]

    Yuan Y, Cheng J L 2012 J. Chem. Phys. 137 044308

    [37]

    Ren L, Cheng L J, Feng Y, Wang X M 2012 J. Chem. Phys. 137 014309

    [38]

    Li R, Cheng L J 2012 Comput. Theor. Chem. 996 125

    [39]

    Yuan Y, Cheng J L 2013 Int. J. Quantum Chem. 113 1264

    [40]

    Li L F, Cheng L J 2013 J. Chem. Phys. 138 094312

    [41]

    Cheng L J, Yang J L 2013 J. Chem. Phys. 138 141101

    [42]

    Zhao Z Y, Yi J, Zhou D C 2014 Chin. Phys. B 23 017401

    [43]

    Bazterra V E, Ona O, Caputo M C, Ferraro M B, Fuentealba P, Facelli J C 2004 Phys. Rev. A 69 53202

    [44]

    Marin L R, Lemes M R, Dal Pino Jr A 2006 Phys. Stat. Sol. B 243 449

    [45]

    Zhao L Z, Lu W C, Qin W, Zang Q J, Wang C Z, Ho K M 2008 Chem. Phys. Lett. 455 225

    [46]

    Weber J, Alonso M I 1989 Phys. Rev. B 40 5683

  • [1] 高明, 邓永和, 文大东, 田泽安, 赵鹤平, 彭平. 快凝Pd82Si18合金原子团簇的演化特性及遗传机制. 物理学报, 2020, 69(4): 046401. doi: 10.7498/aps.69.20190970
    [2] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算. 物理学报, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [3] 张秀荣, 王杨杨, 李维军, 袁爱华. Wn (n= 16)团簇吸附CO的密度泛函研究. 物理学报, 2013, 62(5): 053603. doi: 10.7498/aps.62.053603
    [4] 阮文, 谢安东, 余晓光, 伍冬兰. NaBn(n=19)团簇的几何结构和电子性质. 物理学报, 2012, 61(4): 043102. doi: 10.7498/aps.61.043102
    [5] 葛桂贤, 闫红霞, 井群, 张建军. 密度泛函理论对AunSc3(n=1—7)团簇结构和性质的研究. 物理学报, 2011, 60(3): 033101. doi: 10.7498/aps.60.033101
    [6] 葛桂贤, 井群, 曹海宾, 杨增强, 唐光辉, 闫红霞. 密度泛函理论研究Run和RunAu(n=112)团簇的结构和电子性质. 物理学报, 2011, 60(10): 103102. doi: 10.7498/aps.60.103102
    [7] 高虹, 朱卫华, 唐春梅, 耿芳芳, 姚长达, 徐云玲, 邓开明. 内掺氮富勒烯N2@C60的几何结构和电子性质的密度泛函计算研究. 物理学报, 2010, 59(3): 1707-1711. doi: 10.7498/aps.59.1707
    [8] 樊沁娜, 李蔚, 张林. 熔融Cu57团簇在急冷过程中弛豫和局域结构转变的分子动力学研究. 物理学报, 2010, 59(4): 2428-2433. doi: 10.7498/aps.59.2428
    [9] 葛桂贤, 杨增强, 曹海滨. 密度泛函理论研究CO与Nin(n=1—6)团簇的相互作用. 物理学报, 2009, 58(9): 6128-6133. doi: 10.7498/aps.58.6128
    [10] 赵骞, 张林, 祁阳, 张宗宁. 低温下Cu13团簇负载于Cu(001)表面上结构变化的分子动力学研究. 物理学报, 2009, 58(13): 47-S52. doi: 10.7498/aps.58.47
    [11] 张林, 张彩碚, 祁阳. 低温下Au959团簇负载于MgO(100)表面后结构变化的分子动力学研究. 物理学报, 2009, 58(13): 53-S57. doi: 10.7498/aps.58.53
    [12] 张林, 徐送宁, 李蔚, 孙海霞, 张彩碚. 小尺寸铜团簇冷却与并合过程中结构变化的原子尺度研究. 物理学报, 2009, 58(13): 58-S66. doi: 10.7498/aps.58.58
    [13] 李喜波, 王红艳, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质. 物理学报, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [14] 徐送宁, 张林, 张彩碚, 祁阳. 熔融Cu55团簇在铜块体中凝固过程的分子动力学模拟. 物理学报, 2009, 58(13): 40-S46. doi: 10.7498/aps.58.40
    [15] 杨 明, 刘建胜, 蔡 懿, 王文涛, 王 成, 倪国权, 李儒新, 徐至展. 低密度大尺寸团簇形成的诊断研究. 物理学报, 2008, 57(1): 176-180. doi: 10.7498/aps.57.176
    [16] 葛桂贤, 罗有华. 密度泛函理论研究MgnOn(n=2—8)团簇的结构和电子性质. 物理学报, 2008, 57(8): 4851-4856. doi: 10.7498/aps.57.4851
    [17] 李喜波, 罗江山, 郭云东, 吴卫东, 王红艳, 唐永建. 密度泛函理论研究Scn,Yn和Lan(n=2—10)团簇的稳定性、电子性质和磁性. 物理学报, 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [18] 王清林, 葛桂贤, 赵文杰, 雷雪玲, 闫玉丽, 杨 致, 罗有华. 密度泛函理论对CoBen(n=1—12)团簇结构和性质的研究. 物理学报, 2007, 56(6): 3219-3226. doi: 10.7498/aps.56.3219
    [19] 袁勇波, 刘玉真, 邓开明, 杨金龙. SiN团簇光电子能谱的指认. 物理学报, 2006, 55(9): 4496-4500. doi: 10.7498/aps.55.4496
    [20] 郝静安, 郑浩平. Ga6N6团簇结构性质的理论计算研究. 物理学报, 2004, 53(4): 1044-1049. doi: 10.7498/aps.53.1044
计量
  • 文章访问数:  6237
  • PDF下载量:  301
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-04
  • 修回日期:  2014-09-11
  • 刊出日期:  2015-02-05

/

返回文章
返回