搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

神光-III激光装置时标激光和任意反射面速度干涉仪探针光源产生技术

张锐 田小程 周丹丹 朱娜 王振国 李宏勋 王建军 李明中 许党朋 党钊 胡东霞 朱启华 郑万国 王峰

引用本文:
Citation:

神光-III激光装置时标激光和任意反射面速度干涉仪探针光源产生技术

张锐, 田小程, 周丹丹, 朱娜, 王振国, 李宏勋, 王建军, 李明中, 许党朋, 党钊, 胡东霞, 朱启华, 郑万国, 王峰

Research of time fiducial laser and probe laser of velocity interferometer system for any reflector for Shenguang-III laser facility

Zhang Rui, Tian Xiao-Cheng, Zhou Dan-Dan, Zhu Na, Wang Zhen-Guo, Li Hong-Xun, Wang Jian-Jun, Li Ming-Zhong, Xu Dang-Peng, Dang Zhao, Hu Dong-Xia, Zhu Qi-Hua, Zheng Wan-Guo, Wang Feng
PDF
导出引用
  • 在惯性约束聚变研究中, 时标激光是对物理诊断数据进行分析的重要时间标尺, 而任意反射面速度干涉仪(VISAR)光源则是冲击波精密诊断必不可少的探针光源. 通过对物理需求的分析, 提出对时标激光与VISAR光源共用脉冲产生单元, 采用时分复用技术实现二者在同一台幅度调制器上的精密整形, 经12分束后再通过声光开关进行选择输出, 从而降低了系统造价, 便于集中控制. 采用了脉冲稳偏、高稳定空间放大、高精度温控谐波转换技术及可快速插拔精密复位的光纤耦合和传能技术, 实现了时标和VISAR光源脉冲的高稳定输出. 研制的时标激光系统可产生与主激光高精度同步的12路二倍频、4路三倍频时标信号, 为神光-III激光装置物理实验提供了重要的时间基准. 产生的VISAR光源脉冲在经过光纤系统和Nd: YAG棒状放大器后, 通过温控LBO晶体倍频, 然后经1 mm芯径的多模传能光纤传输至成像型VISAR系统, 为物理实验提供了单纵模、高亮度、可精密整形的脉冲激光. 系统已用于VISAR诊断物理实验, 获得了完整的冲击加载、减速的图像, 从而为冲击波调速及相关高压物理实验提供了可靠的技术手段.
    Time fiducial laser is an important timing marker for different diagnostic instruments in high energy density physics experiments. The probe laser in velocity interferometer system for any reflector (VISAR) is also vital for precise shock wave diagnosis in inertial confinement fusion (ICF) research. Here, time fiducial laser and VISAR probe laser are generated from one source in SG-III laser facility. After generated from a 1064 nm DFB laser, the laser is modulated by an amplitude modulator driven by a 10 GS/s arbitrary waveform generator. Using time division multiplexing technology, the ten-pulse time fiducial laser and the 20 ns pulse width VISAR probe laser are split by a 12 multiplexer and then the time fiducial and VISAR pulses will be selected individually by acoustic-optic modulators. Using this technology, the cost for the system can be reduced. The technologies adopted in the system also include pulse polarization stabilization, high stable Nd: YAG amplification, high precision thermally controlled frequency conversion, fiber coupling, and energy transmission. The fiber laser system is connected to the Nd: YAG rod amplifier stage with polarizing (PZ) fibers to maintain the polarization state. The output laser of Nd: YAG amplification stage is coupled with different kinds of energy transfer fibers to propagate enough energy and maintain the pulse shape for the time fiducial and VISAR probe laser. The input and output fibers are all coupled to the rod amplifiers with high precision and being easy to plug and play for users. Since the time fiducial and imaging VISAR laser system is far from the front end room and located in the target area, the system also uses an arbitrary waveform generator (AWG) to generate the shaped ten-pulse time fiducial laser and 20 ns VISAR laser. This AWG and the other three AWGs used for the main laser pulse of SG-III laser facility will be all synchronized by 10 GHz clock inputs, realizing the smaller than 7 ps (RMS) jitter between the main laser pulse, time fiducial laser and VISAR pulse. After amplification and frequency conversion, the time fiducial laser finally generates 12 beam 2 and 4-beam 3 laserbeams, providing important reference marks for different detectors in the ICF experiments and making it convenient for the analysis of multiple diagnostic data. The VISAR laser pulse is also amplified by the Nd: YAG amplifiers and frequency-converted to 532 nm green light by a thermally controlled LBO crystal, with output energy larger than 20 mJ. Finally, the 532 nm VISAR probe laser beam is coupled with a 1-mm core diameter fused silica optical fiber, and then propagates 30 meters to the imaging VISAR system. The VISAR probe laser has been used in many high energy density physics experiments. The shock wave loading and slowdown processes are measured. Function for measuring velocity history of shock wave front movement in different kinds of materials can be also added to the SG-III laser facility.
      通信作者: 朱娜, zhangrui8s-1@caep.cn
    • 基金项目: 国家自然科学基金(批准号: 61475145)资助的课题.
      Corresponding author: Zhu Na, zhangrui8s-1@caep.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61475145).
    [1]

    Babushkin A, Seka W, Letzring S A 1997 Proc. SPIE 2869 540

    [2]

    Okishev A V, Roides R G, Begishev I A, Zuegel J D 2006 Proc. SPIE 6053 60530J

    [3]

    Schiano Y, Bar E, Richard A, Feral C, Darquey P 2007 Proc. SPIE 6584 65840N

    [4]

    Barker L M, Hollenbach R E 1972 J. Appl. Phys. 43 4669

    [5]

    Malone R M, Frogget B C, Kaufman M I, Watts P W, Bell P M, Celeste J R, Lee T L 2004 Proc. SPIE 5173 26

    [6]

    Celliers P M, Bradley D K, Collins G W, Hicks D G, Boehly T R, Armstrong W J 2004 Rev. Sci. Instrum. 75 4916

    [7]

    Shui M, Chu G B, Xin J T, Wu Y C, Zhu B, He W H, Xi T, Gu Y Q 2015 Chin. Phys. B 24 094701

    [8]

    Lin H H, Jiang D B, Wang J J, Li M Z, Zhang R, Deng Y, Xu D P, Dang Z 2011 Acta Phys. Sin. 60 025208 (in Chinese) [林宏奂, 蒋东镔, 王建军, 李明中, 张锐, 邓颖, 许党朋, 党钊 2011 物理学报 60 025208]

    [9]

    Zhang R, Li M Z, Wang J J, Duan W T, Wang F, Peng X S, Tian X L 2011 Opt. Laser Tech. 43 179

    [10]

    Wang F, Peng X S, Mei L S, Liu S Y, Jiang X H, Ding Y K 2012 Acta Phys. Sin. 61 135201 (in Chinese) [王峰, 彭晓世, 梅鲁生, 刘慎业, 蒋小华, 丁永坤 2012 物理学报 61 135201]

    [11]

    Wang F, Peng X S, Shan L Q, Li M, Xue Q X, Xu T, Wei H Y 2014 Acta Phys. Sin. 63 185202 (in Chinese) [王峰, 彭晓世, 单连强, 李牧, 薛全喜, 徐涛, 魏惠月 2014 物理学报 63 185202]

  • [1]

    Babushkin A, Seka W, Letzring S A 1997 Proc. SPIE 2869 540

    [2]

    Okishev A V, Roides R G, Begishev I A, Zuegel J D 2006 Proc. SPIE 6053 60530J

    [3]

    Schiano Y, Bar E, Richard A, Feral C, Darquey P 2007 Proc. SPIE 6584 65840N

    [4]

    Barker L M, Hollenbach R E 1972 J. Appl. Phys. 43 4669

    [5]

    Malone R M, Frogget B C, Kaufman M I, Watts P W, Bell P M, Celeste J R, Lee T L 2004 Proc. SPIE 5173 26

    [6]

    Celliers P M, Bradley D K, Collins G W, Hicks D G, Boehly T R, Armstrong W J 2004 Rev. Sci. Instrum. 75 4916

    [7]

    Shui M, Chu G B, Xin J T, Wu Y C, Zhu B, He W H, Xi T, Gu Y Q 2015 Chin. Phys. B 24 094701

    [8]

    Lin H H, Jiang D B, Wang J J, Li M Z, Zhang R, Deng Y, Xu D P, Dang Z 2011 Acta Phys. Sin. 60 025208 (in Chinese) [林宏奂, 蒋东镔, 王建军, 李明中, 张锐, 邓颖, 许党朋, 党钊 2011 物理学报 60 025208]

    [9]

    Zhang R, Li M Z, Wang J J, Duan W T, Wang F, Peng X S, Tian X L 2011 Opt. Laser Tech. 43 179

    [10]

    Wang F, Peng X S, Mei L S, Liu S Y, Jiang X H, Ding Y K 2012 Acta Phys. Sin. 61 135201 (in Chinese) [王峰, 彭晓世, 梅鲁生, 刘慎业, 蒋小华, 丁永坤 2012 物理学报 61 135201]

    [11]

    Wang F, Peng X S, Shan L Q, Li M, Xue Q X, Xu T, Wei H Y 2014 Acta Phys. Sin. 63 185202 (in Chinese) [王峰, 彭晓世, 单连强, 李牧, 薛全喜, 徐涛, 魏惠月 2014 物理学报 63 185202]

  • [1] 郭禧庆, 周静, 王晨曦, 秦琛, 郭成哲, 李刚, 张鹏飞, 张天才. 地基引力波探测激光干涉仪的真空残余气体噪声分析. 物理学报, 2024, 73(5): 050401. doi: 10.7498/aps.73.20231462
    [2] 杨为明, 段晓溪, 张琛, 理玉龙, 刘浩, 关赞洋, 章欢, 孙亮, 董云松, 杨冬, 王哲斌, 杨家敏. 小尺度靶丸冲击波调控的冲击波测量技术优化及应用. 物理学报, 2024, 73(12): 125203. doi: 10.7498/aps.73.20232000
    [3] 岳东宁, 董全力, 陈民, 赵耀, 耿盼飞, 远晓辉, 盛政明, 张杰. 强激光与近临界密度等离子体相互作用中的无碰撞静电冲击波产生. 物理学报, 2023, 72(11): 115202. doi: 10.7498/aps.72.20230271
    [4] 王绩勋, 高勋, 宋超, 林景全. 纳秒激光在铜靶材中诱导冲击波的实验研究. 物理学报, 2015, 64(4): 045204. doi: 10.7498/aps.64.045204
    [5] 何民卿, 董全力, 盛政明, 张杰. 激光驱动的冲击波自生磁场以及外加磁场的冲击波放大研究. 物理学报, 2015, 64(10): 105202. doi: 10.7498/aps.64.105202
    [6] 杜军, 赵卫疆, 曲彦臣, 陈振雷, 耿利杰. 基于相位调制器与Fabry-Perot干涉仪的激光多普勒频移测量方法. 物理学报, 2013, 62(18): 184206. doi: 10.7498/aps.62.184206
    [7] 王瑞荣, 王伟, 方智恒, 安红海, 贾果, 谢志勇, 孟祥富. 激光冲击波压缩稠密铝辐射不透明度实验研究. 物理学报, 2013, 62(12): 125202. doi: 10.7498/aps.62.125202
    [8] 宋天明, 易荣清, 崔延莉, 于瑞珍, 杨家敏, 朱托, 侯立飞, 杜华冰. ICF实验软X射线能谱仪对辐射能流时间关联测量的时标系统. 物理学报, 2012, 61(7): 075208. doi: 10.7498/aps.61.075208
    [9] 王峰, 彭晓世, 梅鲁生, 刘慎业, 蒋小华, 丁永坤. 基于速度干涉仪的冲击波精密调速实验技术研究. 物理学报, 2012, 61(13): 135201. doi: 10.7498/aps.61.135201
    [10] 令维军, 董全力, 张蕾, 张少刚, 董忠, 魏凯斌, 王首钧, 何民卿, 盛政明, 张杰. 高密度平面靶等离子体中激光驱动冲击波加速离子的能谱展宽. 物理学报, 2011, 60(7): 075201. doi: 10.7498/aps.60.075201
    [11] 王峰, 彭晓世, 刘慎业, 李永升, 蒋小华, 丁永坤. 超高压下冲击波速度直接测量技术. 物理学报, 2011, 60(2): 025202. doi: 10.7498/aps.60.025202
    [12] 王峰, 彭晓世, 刘慎业, 蒋小华, 丁永坤. 利用成像型速度干涉仪进行聚苯乙烯材料中冲击波调速的实验研究. 物理学报, 2011, 60(8): 085203. doi: 10.7498/aps.60.085203
    [13] 张永康, 于水生, 姚红兵, 王飞, 任爱国, 裴旭. 强脉冲激光在AZ31B镁合金中诱导冲击波的实验研究. 物理学报, 2010, 59(8): 5602-5605. doi: 10.7498/aps.59.5602
    [14] 何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰. 强激光与稠密等离子体作用引起的冲击波加速离子的研究. 物理学报, 2009, 58(1): 363-372. doi: 10.7498/aps.58.363
    [15] 顾永玉, 张永康, 张兴权, 史建国. 约束层对激光驱动冲击波压力影响机理的理论研究. 物理学报, 2006, 55(11): 5885-5891. doi: 10.7498/aps.55.5885
    [16] 傅思祖, 黄秀光, 吴 江, 王瑞荣, 马民勋, 何钜华, 叶君健, 顾 援. 斜入射激光驱动的冲击波在样品中传播特性的实验研究. 物理学报, 2003, 52(8): 1877-1881. doi: 10.7498/aps.52.1877
    [17] 江少恩, 郑志坚, 李文洪, 丁耀南, 孙可煦, 刘永刚, 蒋小华. X射线辐射驱动冲击波的实验测量与分析. 物理学报, 2000, 49(1): 94-97. doi: 10.7498/aps.49.94
    [18] 卞保民, 陈建平, 杨玲, 倪晓武, 陆建. 空气中激光等离子体冲击波的传输特性研究. 物理学报, 2000, 49(3): 445-448. doi: 10.7498/aps.49.445
    [19] 傅思祖, 顾援, 吴江, 王世绩, 何巨华. 超高压状态方程中激光驱动冲击波稳定性. 物理学报, 1995, 44(7): 1108-1112. doi: 10.7498/aps.44.1108
    [20] 顾援, 倪元龙, 王勇刚, 毛楚生, 吴逢春, 吴江, 朱俭, 万炳根. 激光驱动高压冲击波的实验观察. 物理学报, 1988, 37(10): 1690-1693. doi: 10.7498/aps.37.1690
计量
  • 文章访问数:  7335
  • PDF下载量:  232
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-06
  • 修回日期:  2015-09-20
  • 刊出日期:  2016-01-20

/

返回文章
返回