搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PTB7,Bis-PC70BM,PC70BM的高效率有机三元太阳能电池

金士琪 徐征 赵谡玲 赵蛟 李杨 邓丽娟

引用本文:
Citation:

基于PTB7,Bis-PC70BM,PC70BM的高效率有机三元太阳能电池

金士琪, 徐征, 赵谡玲, 赵蛟, 李杨, 邓丽娟

Efficient organic ternary solar cells based on PTB7 and PC70BM with Bis-PC70BM

Jin Shi-Qi, Xu Zheng, Zhao Su-Ling, Zhao Jiao, Li Yang, Deng Li-Juan
PDF
导出引用
  • 我们将Bis-PC70BM作为第二种电子受体混入基于PTB7:PC70BM的聚合物太阳能电池中, 制备了三元混合聚合物太阳能电池. 相比于PC70BM, Bis-PC70BM的最低未占分子轨道(lowest unoccupied molecular orbital, LUMO)能级更高, 所以掺入Bis-PC70BM后器件的开路电压(VOC)得到了提升. Bis-PC70BM在PTB7和PC70BM之间起到桥梁的作用, 因此在给体/受体界面创造了更多的电荷传递通道. 而且从原子力显微镜中得到的结果来看, 当混入质量比为3% 的Bis-PC70BM后薄膜的表面形貌更为平整, 平均粗糙度从原来的1.87 nm降到了1.80 nm. 能量转换效率(power conversion efficiency, PCE)达到7.00%, 其中器件的VOC为0.77 V, 短路电流(JSC) 为13.92 mAcm-2, 比PTB7:PC70BM 的器件效率6.07%提高了15%.
    In recent years, solar cells, especially the bulk heterojunction (BHJ) polymer solar cells (PSCs), have attracted considerable attention. BHJ PSCs have several advantages such as easy fabrication, light weight, low cost and flexibility. The research on ternary BHJ PSCs will become a hot topic since incorporating near infrared region (NIR) low bandgap polymer materials into the donor/acceptor system can easily extend the absorption spectral range and improve the photon harvesting. In this paper, we investigate the ternary PSCs based on poly{4, 8-bis[(2-ethylhexyl)-oxy]benzo[1, 2-b:4, 5-b']dithiophene-2, 6-diyl-alt-3-fluoro-2-[(2-ethylhexyl) carbonyl]thieno[3, 4-b]thiophene-4, 6-diyl} (PTB7); Bis adduct of phenyl-C71-butyric acid methyl ester (Bis-PC70BM); [6, 6]-phenyl-C71-butyric-acid-methyl-ester (PC70BM). The performance of PSCs based on PTB7 and PC70BM may be improved by doping with Bis-PC70BM which is used as an electron-cascade acceptor material. Ternary blend PSCs with 3% Bis-PC70BM exhibit a power conversion efficiency (PCE) of 7.00%, higher than that (6.07%) of the PTB7 :PC70BM binary blend. The open-circuit voltage (VOC) is 0.77 V, the short-circuit current (JSC) is 13.92 mA cm-2 and the fill factor (FF) is 65%. However, in our research, the absorption spectra for the films with different amount of Bis-PC70BM are hardly changed, implying that doping with Bis-PC70BM would not improve the photon harvesting. The LUMO (HOMO) energy levels of PTB7, Bis-PC70BM and PC70BM are -3.49 eV (-5.31 eV), -3.80 eV (-6.10 eV) and -3.91 eV (-6.20 eV), respectively. Due to the higher LUMO energy levels of Bis-PC70BM relative to PC70BM, the VOC increases when Bis-PC70BM is used. The cascade-like energy levels of ternary blend PSCs can facilitate the charge transfer at the donor/acceptor interface owing to the bridging effect. There are three routes for charge transfer (PTB7-Bis-PC70BM, Bis-PC70BM-PC70BM and PTB7-PC70BM) in ternary PSCs, more than that one in the binary PTB7:PC70BM counterpart. Moreover, PC70BM can provide a driving force to transfer the electrons on the LUMO of Bis-PC70BM to a lower energy orbital (the LUMO of PC70BM), which can facilitate charge transfer from PTB7 to Bis-PC70BM. Atomic force microscopy (AFM) images show that when 3% Bis-PC70BM is used, the film of the ternary blend active layer becomes smoother and the root-mean-square (RMS) roughness decreases from 1.87 nm to 1.80 nm. The decreased roughness is likely good for the contact between the PEDOT:PSS and the active layer, improving the transport rate. We have fabricated hole-only devices using a high-work-function material (Au) as the cathode to block the back injection of electrons in order to investigate charge carrier transport and collection in the PSCs. Result shows that doping with Bis-PC70BM may not change the hole mobility in the device. Besides, the Jph-Veff characteristics shows that doping with 3% Bis-PC70BM can facilitate exciton dissociation and charge collection at a low voltage. Our results indicate that using Bis-PC70BM as an electron-cascade acceptor material in PTB7 :PC70BM blend to fabricate ternary blend PSCs is a promising way to improve the PCE.
      通信作者: 徐征, zhengxu@bjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61575019, 11474018)、教育部博士点基金(批准号: 20130009130001)和中央高校基本科研业务费专项资金(批准号: 2012JBZ001)资助的课题.
      Corresponding author: Xu Zheng, zhengxu@bjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61575019, 11474018), the Research Fund for the Doctoral Program of Higher Education (Grant No. 20130009130001), and the Fundamental Research Funds for the Central Universities (Grant No. 2012JBZ001).
    [1]

    Cheng Y J, Yang S H, Hsu C S 2009 Chem. Rev. 109 5868

    [2]

    Gnes S, Neugebauer H, Sariciftci N S 2007 Chem. Rev. 107 1324

    [3]

    Dang M T, Hirsch L, Wantz G, Wuest J D 2013 Chem. Rev. 113 3734

    [4]

    Duan C, Zhang K, Zhong C, Huang F, Cao Y 2013 Chem. Soc. Rev. 42 9071

    [5]

    Li G, Zhu R, Yang Y 2012 Nat. Photonics 6 153

    [6]

    Krebs F C, Espinosa N, Hsel M, Sondergaard R R, Jorgensen M 2014 Adv. Mater. 26 29

    [7]

    Yip H L, Jen A K Y 2012 Energy Environ. Sci. 5 5994

    [8]

    Lin Y, Li Y, Zhan X 2012 Chem. Soc. Rev. 41 4245

    [9]

    Zhao X, Zhan X 2011 Chem. Soc. Rev. 40 3728

    [10]

    Li Y F 2012 Acc. Chem. Res. 45 723

    [11]

    Bahrami A, Mohammadnejad S, Abkenar N J 2014 Chin. Phys. B 23 028803

    [12]

    Samadpour M, Zad A I, Molaei M 2014 Chin. Phys. B 23 047302

    [13]

    Ahmadi M, Dafeh S R 2015 Chin. Phys. B 24 0117203

    [14]

    Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H 2014 Nat. Commun. 5 5293

    [15]

    Zhang S Q, Ye L, Zhao W C, Yang B, Wang Q, Hou J H 2015 Sci. China Chem. 58 248

    [16]

    Chen J D, Cui C H, Li Y Q, Zhou L, Ou Q D, Li C, Li Y F, Tang J X 2015 Adv. Mater. 27 1035

    [17]

    Li H, Zhang Z G, Li Y F, Wang J 2012 Appl. Phys. Lett. 101 163302

    [18]

    Bonaccorso F, Balis N, Stylianakis M M, Savarese M, Adamo C, Gemmi M, Pellegrini V, Stratakis E, Kymakis E 2015 Adv. Funct. Mater. 25 3870

    [19]

    Balis N, Konios D, Stratakis E, Kymakis E 2015 Chem. Nano. Mat. 1 346

    [20]

    Goh T, Huang J S, Bartolome B, Sfeir M Y, Vaisman M, Lee M L, Taylor A D 2015 J. Mater. Chem. A 3 18611

    [21]

    Gupta V, Bharti V, Kumar M, Chand S, Heeger A J 2015 Adv. Mater. 27 4398

    [22]

    Lu L Y, Chen W, Xu T, Yu L P 2015 Nat. Commun. 6 7327

    [23]

    Janssen R A J, Nelson J 2013 Adv. Mater. 25 1847

    [24]

    Cheng P, Li Y, Zhan X 2014 Energy Environ. Sci. 7 2005

    [25]

    Ye L, Zhang S, Qian D, Wang Q, Hou J 2013 J. Phys. Chem. C 117 25360

    [26]

    He Y, Zhao G, Peng B, Li Y 2010 Adv. Funct. Mater. 20 3383

    [27]

    Peet J, Kim J, Coates N E, Ma W L, Moses D, Heeger A J, Bazan G C 2007 Nat. Mater. 6 497

    [28]

    Shuttle C G, Hamilton R, O'Regan B C, Nelson J, Durrant J R 2010 Proc. Natl. Acad. Sci. 107 16448

    [29]

    Lu L Y, Xu T, Chen W, Lee J M, Luo Z Q, Jung I H, Park H I, Kim S O, Yu L P 2013 Nano Lett. 13 2365

    [30]

    Mihailetchi V D, Koster L J A, Hummelen J C, Blom P W M 2004 Phys. Rev. Lett. 93 216601

    [31]

    Shrotriya V, Yao Y, Li G, Yang Y 2006 Appl. Phys. Lett. 89 63505

    [32]

    Malliaras G, Salem J, Brock P, Scott C 1998 Phys. Rev. B 58 R13411

    [33]

    Wang Z, Zhang F, Li L, An Q, Wang J, Zhang J 2014 Appl. Surface Sci. 305 221

  • [1]

    Cheng Y J, Yang S H, Hsu C S 2009 Chem. Rev. 109 5868

    [2]

    Gnes S, Neugebauer H, Sariciftci N S 2007 Chem. Rev. 107 1324

    [3]

    Dang M T, Hirsch L, Wantz G, Wuest J D 2013 Chem. Rev. 113 3734

    [4]

    Duan C, Zhang K, Zhong C, Huang F, Cao Y 2013 Chem. Soc. Rev. 42 9071

    [5]

    Li G, Zhu R, Yang Y 2012 Nat. Photonics 6 153

    [6]

    Krebs F C, Espinosa N, Hsel M, Sondergaard R R, Jorgensen M 2014 Adv. Mater. 26 29

    [7]

    Yip H L, Jen A K Y 2012 Energy Environ. Sci. 5 5994

    [8]

    Lin Y, Li Y, Zhan X 2012 Chem. Soc. Rev. 41 4245

    [9]

    Zhao X, Zhan X 2011 Chem. Soc. Rev. 40 3728

    [10]

    Li Y F 2012 Acc. Chem. Res. 45 723

    [11]

    Bahrami A, Mohammadnejad S, Abkenar N J 2014 Chin. Phys. B 23 028803

    [12]

    Samadpour M, Zad A I, Molaei M 2014 Chin. Phys. B 23 047302

    [13]

    Ahmadi M, Dafeh S R 2015 Chin. Phys. B 24 0117203

    [14]

    Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H 2014 Nat. Commun. 5 5293

    [15]

    Zhang S Q, Ye L, Zhao W C, Yang B, Wang Q, Hou J H 2015 Sci. China Chem. 58 248

    [16]

    Chen J D, Cui C H, Li Y Q, Zhou L, Ou Q D, Li C, Li Y F, Tang J X 2015 Adv. Mater. 27 1035

    [17]

    Li H, Zhang Z G, Li Y F, Wang J 2012 Appl. Phys. Lett. 101 163302

    [18]

    Bonaccorso F, Balis N, Stylianakis M M, Savarese M, Adamo C, Gemmi M, Pellegrini V, Stratakis E, Kymakis E 2015 Adv. Funct. Mater. 25 3870

    [19]

    Balis N, Konios D, Stratakis E, Kymakis E 2015 Chem. Nano. Mat. 1 346

    [20]

    Goh T, Huang J S, Bartolome B, Sfeir M Y, Vaisman M, Lee M L, Taylor A D 2015 J. Mater. Chem. A 3 18611

    [21]

    Gupta V, Bharti V, Kumar M, Chand S, Heeger A J 2015 Adv. Mater. 27 4398

    [22]

    Lu L Y, Chen W, Xu T, Yu L P 2015 Nat. Commun. 6 7327

    [23]

    Janssen R A J, Nelson J 2013 Adv. Mater. 25 1847

    [24]

    Cheng P, Li Y, Zhan X 2014 Energy Environ. Sci. 7 2005

    [25]

    Ye L, Zhang S, Qian D, Wang Q, Hou J 2013 J. Phys. Chem. C 117 25360

    [26]

    He Y, Zhao G, Peng B, Li Y 2010 Adv. Funct. Mater. 20 3383

    [27]

    Peet J, Kim J, Coates N E, Ma W L, Moses D, Heeger A J, Bazan G C 2007 Nat. Mater. 6 497

    [28]

    Shuttle C G, Hamilton R, O'Regan B C, Nelson J, Durrant J R 2010 Proc. Natl. Acad. Sci. 107 16448

    [29]

    Lu L Y, Xu T, Chen W, Lee J M, Luo Z Q, Jung I H, Park H I, Kim S O, Yu L P 2013 Nano Lett. 13 2365

    [30]

    Mihailetchi V D, Koster L J A, Hummelen J C, Blom P W M 2004 Phys. Rev. Lett. 93 216601

    [31]

    Shrotriya V, Yao Y, Li G, Yang Y 2006 Appl. Phys. Lett. 89 63505

    [32]

    Malliaras G, Salem J, Brock P, Scott C 1998 Phys. Rev. B 58 R13411

    [33]

    Wang Z, Zhang F, Li L, An Q, Wang J, Zhang J 2014 Appl. Surface Sci. 305 221

  • [1] 颜佳豪, 陈思璇, 杨建斌, 董敬敬. 吸收层离子掺杂提高有机无机杂化钙钛矿太阳能电池效率及稳定性. 物理学报, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [2] 张翱, 张春秀, 张春梅, 田益民, 闫君, 孟涛. CH3NH3多聚体的形成对有机-无机杂化钙钛矿太阳能电池性能的影响. 物理学报, 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
    [3] 姬超, 梁春军, 由芳田, 何志群. 界面修饰对有机-无机杂化钙钛矿太阳能电池性能的影响. 物理学报, 2021, 70(2): 028402. doi: 10.7498/aps.70.20201222
    [4] 兰伟霞, 顾嘉陆, 高晓辉, 廖英杰, 钟宋义, 张卫东, 彭艳, 孙钰, 魏斌. 基于光子晶体的有机太阳能电池研究进展. 物理学报, 2021, 70(12): 128804. doi: 10.7498/aps.70.20201805
    [5] 周朋超, 张卫东, 顾嘉陆, 陈卉敏, 胡腾达, 蒲华燕, 兰伟霞, 魏斌. 基于三元非富勒烯体系的高效有机太阳能电池. 物理学报, 2020, 69(19): 198801. doi: 10.7498/aps.69.20200624
    [6] 孙龙, 任昊, 冯大政, 王石语, 邢孟道. 一种新的基于频域有限差分方法的小周期有机太阳能电池的光电特性. 物理学报, 2018, 67(17): 178102. doi: 10.7498/aps.67.20180821
    [7] 张翱, 陈云琳, 闫君, 张春秀. 有机阳离子对卤素钙钛矿太阳能电池性能的影响. 物理学报, 2018, 67(10): 106701. doi: 10.7498/aps.67.20180236
    [8] 赵泽宇, 刘晋侨, 李爱武, 牛立刚, 徐颖. 基于微腔-抗反射谐振杂化模式的吸收增强型有机太阳能电池的理论研究. 物理学报, 2016, 65(24): 248801. doi: 10.7498/aps.65.248801
    [9] 邓丽娟, 赵谡玲, 徐征, 赵玲, 王林. 三元P3HT:PTB7-Th:PCBM聚合物太阳能电池性能的研究. 物理学报, 2016, 65(7): 078801. doi: 10.7498/aps.65.078801
    [10] 黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿. 石墨烯衍生物作为有机太阳能电池界面材料的研究进展. 物理学报, 2015, 64(3): 038103. doi: 10.7498/aps.64.038103
    [11] 袁怀亮, 李俊鹏, 王鸣魁. 有机无机杂化固态太阳能电池的研究进展. 物理学报, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [12] 李萌, 牛贺莹, 姚路炎, 王栋梁, 周忠坡, 马恒. 胆甾液晶掺杂活性层对有机太阳能电池性能的影响. 物理学报, 2014, 63(24): 248403. doi: 10.7498/aps.63.248403
    [13] 孙凯, 何志群, 梁春军. 多温度阶梯退火对有机聚合物太阳能电池器件性能的影响. 物理学报, 2014, 63(4): 048801. doi: 10.7498/aps.63.048801
    [14] 蒲年年, 李海蓉, 谢龙珍. NiOx作为空穴传输层对有机太阳能电池光吸收的影响. 物理学报, 2014, 63(6): 067201. doi: 10.7498/aps.63.067201
    [15] 黄迪, 徐征, 赵谡玲. 使用PTB7作为阳极修饰层提高有机发光二极管的性能. 物理学报, 2014, 63(2): 027301. doi: 10.7498/aps.63.027301
    [16] 李青, 李海强, 赵娟, 黄江, 于军胜. 阴极修饰层对 SubPc/C60 倒置型有机太阳能电池性能的影响. 物理学报, 2013, 62(12): 128803. doi: 10.7498/aps.62.128803
    [17] 王鹏, 郭闰达, 陈宇, 岳守振, 赵毅, 刘式墉. 梯度掺杂体异质结对有机太阳能电池光电转换效率的影响. 物理学报, 2013, 62(8): 088801. doi: 10.7498/aps.62.088801
    [18] 李荣华, 孟卫民, 彭应全, 马朝柱, 汪润生, 谢宏伟, 王颖, 叶早晨. 阴极功函数和激子产生率对肖特基接触单层有机太阳能电池开路电压的影响研究. 物理学报, 2010, 59(3): 2126-2130. doi: 10.7498/aps.59.2126
    [19] 李艳武, 刘彭义, 侯林涛, 吴冰. Rubrene作电子传输层的异质结有机太阳能电池. 物理学报, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [20] 邢宏伟, 彭应全, 杨青森, 马朝柱, 汪润生, 李训栓. 有机体异质结太阳能电池的数值分析. 物理学报, 2008, 57(11): 7374-7379. doi: 10.7498/aps.57.7374
计量
  • 文章访问数:  6200
  • PDF下载量:  266
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-08
  • 修回日期:  2015-10-28
  • 刊出日期:  2016-01-20

/

返回文章
返回