搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LaTiO高k栅介质GeMOS电容电特性及Ti含量优化

徐火希 徐静平

引用本文:
Citation:

LaTiO高k栅介质GeMOS电容电特性及Ti含量优化

徐火希, 徐静平

Electrical properties of LaTiO high-k gate dielectric Ge MOS Capacitor and Ti content optimization

Xu Huo-Xi, Xu Jing-Ping
PDF
导出引用
  • 采用共反应溅射法将Ti添加到La2O3中, 制备了LaTiO/Ge 金属-氧化物- 半导体电容, 并就Ti含量对器件电特性的影响进行了仔细研究. 由于Ti-基氧化物具有极高的介电常数, LaTiO栅介质能够获得高k值; 然而由于界面/近界面缺陷随着Ti含量的升高而增加, 添加Ti使界面质量恶化, 进而使栅极漏电流增大、器件可靠性降低. 因此, 为了在器件电特性之间实现协调, 对Ti含量进行优化显得尤为重要. 就所研究的Ti/La2O3比率而言, 18.4%的Ti/La2O3比率最合适. 该比率导致器件呈现出高k值(22.7)、低Dit(5.51011 eV-1cm-2)、可接受的Jg(Vg=1 V, Jg=7.110-3 Acm-2)和良好的器件可靠性.
    Ti is intentionally added into La2O3 to prepare LaTiO gate dielectric Ge metal-oxide-semiconductor (MOS) capacitor with both high k value and good interface quality. In order to examine the effects of Ti content on the electrical properties of the device, LaTiO films with different Ti/La2O3 ratios (10.6%, 18.4%, 25.7% and 31.5%) are deposited by reactively co-sputtering Ti and La2O3 targets. Capacitance-voltage curves, gate-leakage current properties and high-field stress characteristics of the devices are measured and analyzed. It is found that some electrical properties, such as interface-sate density, gate-leakage current, device reliability and k value, strongly depend on Ti content incorporated into La2O3. Ti incorporation can significantly increase the k value: the higher the Ti content, the larger the k value is. The relevant mechanism lies in the fact that higher Ti content leads to an increase of Ti-based oxide in the LaTi-based oxide, because Ti-based oxide has larger k value than La-based oxide. On the contrary, interface quality, gate-leakage current and device reliability deteriorate as Ti content increases because Ti-induced defects at and near the interface increase with Ti content increasing. Of the Ti/La2O3 ratios in the examined range, the largest Ti/La2O3 ratio is 31.5%, which results in the highest k value of 29.4, the largest gate-leakage current of 9.710-2 Acm-2 at Vg=1 V, the highest interface-sate density of 4.51012 eV-1cm-2 and the worst device reliability, while the La2O3 film without Ti incorporation exhibits the lowest k value of 11.7, the smallest gate-leakage current of 2.510-3 Acm-2 at Vg=1 V, the lowest interface-sate density of 3.31011 eV-1cm-2 and the best device reliability. As far as the trade-off among the electrical properties is concerned, 18.4% is the most suitable Ti/La2O3 ratio, which leads to a higher k value of 22.7, lower interface-sate density of 5.51011 eV-1cm-2, an acceptable gate-leakage current of 7.110-3 Acm-2 at Vg=1 V, and a better device reliability. In view of the fact mentioned above, excellent electrical properties could be obtained by setting Ti content to be an optimal value. Therefore, the optimization of Ti content is critical for LaTi-based oxide Ge MOS device preparation.
      通信作者: 徐静平, 799904108@qq.com
    • 基金项目: 国家自然科学基金(批准号: 61274112)、湖北省自然科学基金(批准号: 2011CDB165)和黄冈师范学院科研项目(批准号: 2012028803)资助的课题.
      Corresponding author: Xu Jing-Ping, 799904108@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61274112), the Natural Science Foundation of Hubei Province, China (Grant No. 2011CDB165), and the Scientific Research Program of Huanggang Normal University, China (Grant No. 2012028803).
    [1]

    Zhao M, Liu L, Liang R R, Wang J, Xu J 2014 Jpn. J. Appl. Phys. 53 041301

    [2]

    Oh I K, Kim M K, Lee J S, Lee C W, Lansalot-Matras C, Noh W, Park J, Noori A, Thompson D, Chu S, Maeng W J, Kim H 2013 Appl. Surf. Sci. 287 349

    [3]

    Fan J B, Liu H X, Fei C X, Ma F, Fan X J, Hao Y 2013 Chin. Phys. B 22 037702

    [4]

    Bethge O, Henkel C, Abermann S, Pozzovivo G, Stoeger-pollach M, Werner W S M, Smoliner J, Bertagnolli E 2012 Appl. Surf. Sci. 258 3444

    [5]

    Bom N M, Soares G V, Krug C, Pezzi R P, Baumvol I J R, Radtke C 2012 Appl. Surf. Sci. 258 5707

    [6]

    Xie Q, Deduytsche D, Schaekers M, Caymax M, Delabie A, Qu X P, Detavernier C 2010 Appl. Phys. Lett. 97 112905

    [7]

    Liu G Z, Li C, Lu C B, Tang R F, Tang M R, Wu Z, Yang X, Huang W, Lai H K, Chen S Y 2012 Chin. Phys. B 21 117701

    [8]

    Lin M, An X, Li M, Yun Q X, Li M, Li Z Q, Liu P Q, Zhang X, Huang R 2014 Chin. Phys. B 23 067701

    [9]

    Li Q L, Xie Q, Jiang Y L, Ru G P, Qu X P, Li B Z, Zhang D W, Deduytsche D, Detavernier C 2011 Semicond. Sci. Tech. 26 125003

    [10]

    Xue B Q, Wang S K, Han L, Chang H D, Sun B, Zhao W, Liu H G 2013 Chin. Phys. B 22 107302

    [11]

    Maeng W J, Oh I K, Lee H B R, Kim M K, Lee C W, Lansalot C 2014 Appl. Surf. Sci. 321 214

    [12]

    Pi T W, Huang M L, Lee W C, Chu L K, Lin T D, Chiang T H, Wang Y C, Wu Y D 2011 Appl. Phys. Lett. 98 062903

    [13]

    Lamagna L, Wiemer C, Perego M, Volkos S N, Baldovino S, Tsoutsou D, Coulon P E, Fanciulli M 2010 J. Appl. Phys. 108 084108

    [14]

    Mirovic I Z, Althobaiti M, Weerakkody A D, Dhanak V R, Linhart W M, Veal T D, Sedghi N, Hall S, Chalker P R, Tsoutsou D, Dimoulas A 2014 J. Appl. Phys. 115 114102

    [15]

    Mavrou G, Galata S, Tsipas P, Sotiropoulos A, Panayiotatos Y A, Dimoulas A, Evangelou E K, Seo J W, Dieker C 2008 J. Appl. Phys. 103 014506

    [16]

    Cheng C L, Horng J H, Wu Y Z 2012 Dev. Mater. Reliab. 12 399

    [17]

    He G, Sun Z Q, Liu M, Zhang L D 2010 Appl. Phys. Lett. 97 192902

    [18]

    Hu A B, Xu Q X 2010 Chin. Phys. B 19 528

    [19]

    Xu H X, Xu J P, Li C X, Chan C L, Lai P T 2010 Appl. Phys. A 99 903

    [20]

    Xu H X, Xu J P, Li C X, Liu L, Lai P T, Chan C L 2009 Proceedings of IEEE International Conference on Electron Devices and Solid-State Circuits Xian, China, November 25-27, 2009 p225

    [21]

    Fu C H, Chang-Liao K S, Liu L J, Li C C, Chen T C, Cheng J W, Lu C C 2014 Electron Dev. 61 2662

    [22]

    Sun Q Q, Shi Y, Dong L, Liu H, Ding S J, Zhang D W 2008 Appl. Phys. Lett. 92 102908

    [23]

    Li C X, Zou X, Lai P T, Xu J P, Chen C L 2008 Microelectron. Reliab. 48 526

    [24]

    Lu N, Bai W, Ramirez A, Mouli C, Ritenour A, Lee M L, Antoniadis D, Kwong D L 2005 Appl. Phys. Lett. 87 051922

    [25]

    Arimura H, Naitou Y, Kitano N, Oku Y, Yamaguchi N, Kosuda M, Hosoi T, Shimura T, Watanabe H 2008 ECS Trans. 16 121

    [26]

    Lu N, Li H J, Gardner M, Wickramanayaka S 2005 Electron Dev. Lett. 26 298

    [27]

    Terman L M 1962 Solid State Electron. 5 285

  • [1]

    Zhao M, Liu L, Liang R R, Wang J, Xu J 2014 Jpn. J. Appl. Phys. 53 041301

    [2]

    Oh I K, Kim M K, Lee J S, Lee C W, Lansalot-Matras C, Noh W, Park J, Noori A, Thompson D, Chu S, Maeng W J, Kim H 2013 Appl. Surf. Sci. 287 349

    [3]

    Fan J B, Liu H X, Fei C X, Ma F, Fan X J, Hao Y 2013 Chin. Phys. B 22 037702

    [4]

    Bethge O, Henkel C, Abermann S, Pozzovivo G, Stoeger-pollach M, Werner W S M, Smoliner J, Bertagnolli E 2012 Appl. Surf. Sci. 258 3444

    [5]

    Bom N M, Soares G V, Krug C, Pezzi R P, Baumvol I J R, Radtke C 2012 Appl. Surf. Sci. 258 5707

    [6]

    Xie Q, Deduytsche D, Schaekers M, Caymax M, Delabie A, Qu X P, Detavernier C 2010 Appl. Phys. Lett. 97 112905

    [7]

    Liu G Z, Li C, Lu C B, Tang R F, Tang M R, Wu Z, Yang X, Huang W, Lai H K, Chen S Y 2012 Chin. Phys. B 21 117701

    [8]

    Lin M, An X, Li M, Yun Q X, Li M, Li Z Q, Liu P Q, Zhang X, Huang R 2014 Chin. Phys. B 23 067701

    [9]

    Li Q L, Xie Q, Jiang Y L, Ru G P, Qu X P, Li B Z, Zhang D W, Deduytsche D, Detavernier C 2011 Semicond. Sci. Tech. 26 125003

    [10]

    Xue B Q, Wang S K, Han L, Chang H D, Sun B, Zhao W, Liu H G 2013 Chin. Phys. B 22 107302

    [11]

    Maeng W J, Oh I K, Lee H B R, Kim M K, Lee C W, Lansalot C 2014 Appl. Surf. Sci. 321 214

    [12]

    Pi T W, Huang M L, Lee W C, Chu L K, Lin T D, Chiang T H, Wang Y C, Wu Y D 2011 Appl. Phys. Lett. 98 062903

    [13]

    Lamagna L, Wiemer C, Perego M, Volkos S N, Baldovino S, Tsoutsou D, Coulon P E, Fanciulli M 2010 J. Appl. Phys. 108 084108

    [14]

    Mirovic I Z, Althobaiti M, Weerakkody A D, Dhanak V R, Linhart W M, Veal T D, Sedghi N, Hall S, Chalker P R, Tsoutsou D, Dimoulas A 2014 J. Appl. Phys. 115 114102

    [15]

    Mavrou G, Galata S, Tsipas P, Sotiropoulos A, Panayiotatos Y A, Dimoulas A, Evangelou E K, Seo J W, Dieker C 2008 J. Appl. Phys. 103 014506

    [16]

    Cheng C L, Horng J H, Wu Y Z 2012 Dev. Mater. Reliab. 12 399

    [17]

    He G, Sun Z Q, Liu M, Zhang L D 2010 Appl. Phys. Lett. 97 192902

    [18]

    Hu A B, Xu Q X 2010 Chin. Phys. B 19 528

    [19]

    Xu H X, Xu J P, Li C X, Chan C L, Lai P T 2010 Appl. Phys. A 99 903

    [20]

    Xu H X, Xu J P, Li C X, Liu L, Lai P T, Chan C L 2009 Proceedings of IEEE International Conference on Electron Devices and Solid-State Circuits Xian, China, November 25-27, 2009 p225

    [21]

    Fu C H, Chang-Liao K S, Liu L J, Li C C, Chen T C, Cheng J W, Lu C C 2014 Electron Dev. 61 2662

    [22]

    Sun Q Q, Shi Y, Dong L, Liu H, Ding S J, Zhang D W 2008 Appl. Phys. Lett. 92 102908

    [23]

    Li C X, Zou X, Lai P T, Xu J P, Chen C L 2008 Microelectron. Reliab. 48 526

    [24]

    Lu N, Bai W, Ramirez A, Mouli C, Ritenour A, Lee M L, Antoniadis D, Kwong D L 2005 Appl. Phys. Lett. 87 051922

    [25]

    Arimura H, Naitou Y, Kitano N, Oku Y, Yamaguchi N, Kosuda M, Hosoi T, Shimura T, Watanabe H 2008 ECS Trans. 16 121

    [26]

    Lu N, Li H J, Gardner M, Wickramanayaka S 2005 Electron Dev. Lett. 26 298

    [27]

    Terman L M 1962 Solid State Electron. 5 285

  • [1] 段聪, 刘俊杰, 陈永杰, 左慧玲, 董健生, 欧阳钢. MoS2/SiO2界面黏附性能的尺寸和温度效应. 物理学报, 2024, 73(5): 056801. doi: 10.7498/aps.73.20231648
    [2] 李耀华, 董耀勇, 董辉, 郑学军. 二维MoS2压痕过程异质界面范德瓦耳斯力引起的撕裂行为. 物理学报, 2022, 71(19): 194601. doi: 10.7498/aps.71.20220875
    [3] 陈仙, 张静, 唐昭焕. 纳米尺度下Si/Ge界面应力释放机制的分子动力学研究. 物理学报, 2019, 68(2): 026801. doi: 10.7498/aps.68.20181530
    [4] 陶鹏程, 黄燕, 周孝好, 陈效双, 陆卫. 掺杂对金属-MoS2界面性质调制的第一性原理研究. 物理学报, 2017, 66(11): 118201. doi: 10.7498/aps.66.118201
    [5] 郭瑞花, 卢太平, 贾志刚, 尚林, 张华, 王蓉, 翟光美, 许并社. 界面形核时间对GaN薄膜晶体质量的影响. 物理学报, 2015, 64(12): 127305. doi: 10.7498/aps.64.127305
    [6] 李文涛, 梁艳, 王炜华, 杨芳, 郭建东. LaTiO3(110)薄膜分子束外延生长的精确控制和表面截止层的研究. 物理学报, 2015, 64(7): 078103. doi: 10.7498/aps.64.078103
    [7] 苏少坚, 张东亮, 张广泽, 薛春来, 成步文, 王启明. Ge(001)衬底上分子束外延生长高质量的Ge1-xSnx合金. 物理学报, 2013, 62(5): 058101. doi: 10.7498/aps.62.058101
    [8] 戴显英, 杨程, 宋建军, 张鹤鸣, 郝跃, 郑若川. 应变Ge空穴有效质量的各向异性与各向同性. 物理学报, 2012, 61(23): 237102. doi: 10.7498/aps.61.237102
    [9] 熊飞, 潘红星, 张辉, 杨宇. 溅射沉积自诱导混晶界面与Ge量子点的生长研究. 物理学报, 2011, 60(8): 088102. doi: 10.7498/aps.60.088102
    [10] 邢永忠, 王艳艳, 朱玉兰, 郑玉明. 高密核物质中核子的运动对于K介子的等效质量和能量的影响. 物理学报, 2011, 60(1): 012501. doi: 10.7498/aps.60.012501
    [11] 穆武第, 程海峰, 陈朝辉, 唐耿平, 吴志桥. 粗糙界面对Bi2Te3/PbTe超晶格热电优值影响的理论分析. 物理学报, 2009, 58(2): 1212-1218. doi: 10.7498/aps.58.1212
    [12] 李国俊, 康学亮, 李永平. 二维蜂窝格子光子晶体的远场成像特性及界面对成像质量的影响. 物理学报, 2007, 56(11): 6403-6407. doi: 10.7498/aps.56.6403
    [13] 水嘉鹏, 刘咏松, 裴慧元. 试样的内耗值与振动系统内耗值的比较. 物理学报, 1998, 47(4): 658-663. doi: 10.7498/aps.47.658
    [14] 柯三黄, 黄美纯, 王仁智. 不同晶面与应变状态下Si/Ge应变异质界面的价带能量不连续性. 物理学报, 1996, 45(1): 107-112. doi: 10.7498/aps.45.107
    [15] 陈开茅, 金泗轩, 武兰青, 曾树荣, 刘鸿飞. 在p型硅MOS结构Si/SiO2界面区中与金有关的界面态和深能级. 物理学报, 1993, 42(8): 1324-1332. doi: 10.7498/aps.42.1324
    [16] 陈开茅, 武兰青, 彭清智, 刘鸿飞. p型硅MOS结构Si/SiO2界面及其附近的深能级与界面态. 物理学报, 1992, 41(11): 1870-1879. doi: 10.7498/aps.41.1870
    [17] 张人佶, 褚圣麟, 吴自勤. Ge/Au,Ge/Ag双层膜和Ge-Au,Ge-Ag合金膜中非晶Ge的晶化. 物理学报, 1986, 35(3): 365-374. doi: 10.7498/aps.35.365
    [18] 刘忠立. 一种简易的监控Si-SiO_2界面质量的水银探针. 物理学报, 1977, 26(3): 281-284. doi: 10.7498/aps.26.281
    [19] 陆埮, 杨国琛, 罗辽复. 中微子的质量. 物理学报, 1964, 20(1): 19-32. doi: 10.7498/aps.20.19
    [20] 许伯威, 孔凡梅, 宫学惠. K—K共振态. 物理学报, 1964, 20(11): 1129-1134. doi: 10.7498/aps.20.1129
计量
  • 文章访问数:  4318
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-12
  • 修回日期:  2015-11-09
  • 刊出日期:  2016-02-05

/

返回文章
返回