搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变分模态分解-相干分析的肌间耦合特性

杜义浩 齐文靖 邹策 张晋铭 谢博多 谢平

引用本文:
Citation:

基于变分模态分解-相干分析的肌间耦合特性

杜义浩, 齐文靖, 邹策, 张晋铭, 谢博多, 谢平

Intermuscular coupling characteristics based on variational mode decomposition-coherence

Du Yi-Hao, Qi Wen-Jing, Zou Ce, Zhang Jin-Ming, Xie Bo-Duo, Xie Ping
PDF
导出引用
  • 肌间耦合是肢体运动过程中不同肌肉间的相互关联与相互协调作用.通过研究肌电信号(sEMG)间特征频段的耦合特性可以获得肌肉间的功能联系及中枢神经系统支配肢体运动的执行与协调方式机理.本文将变分模态分解与相干分析相结合,构建变分模态分解-相干分析模型,定量描述肢体运动中相关肌肉sEMG在特征频段的耦合特性.在20%最大自主收缩力静态负荷强度下,采集20名健康被试的sEMG,基于变分模态分解方法将sEMG时频尺度化,进而分析不同sEMG在特征频段的相干性,并计算显著相干面积指标,定量分析肌间特征频段的功能耦合特性.结果表明:低负荷静态握力维持过程中,指浅屈肌与尺侧腕曲肌、指浅屈肌与指伸肌的beta与gamma频段耦合强度随时间推进而增强;相较于指浅屈肌与指伸肌,疲劳状态下指浅屈肌与尺侧腕曲肌beta与gamma频段耦合强度变化更显著,且瞬时频率特征变化相似,揭示运动致疲劳过程中协同肌受中枢神经系统控制以更加同步的方式活动.
    Intermuscular coupling is defined as the interaction, correlation and coordination between different muscles during the body movement, which could be revealed by the synchronization analysis of surface electromyogram (sEMG). The multiscaled coherence analysis of sEMG signals could describe the multiple spatial and temporal functional connection characteristics of intermuscular coupling, which could be helpful for understanding the multiple spatial and temporal coupling mechanism of neuromuscular system. Furthermore, the coupling characteristics in frequency band of sEMG generally reflect the functional connection between muscles which relate to motion control and coordinative mechanism of the central nervous system (CNS). In this paper, we combine variational mode decomposition (VMD) and intermuscular coherence (IMC) analysis to propose a new method named VMD-IMC to quantitatively describe the muscular coupling characteristics in the corresponding frequency bands. First, sEMG data of flexor digitorum superficialis (FDS), flexor carpi ulnaris (FCU) and extensor digitorum (ED) are recorded simultaneously from twenty healthy subjects (253 years) who perform the designed grip task at sustained 20% maximum voluntary contraction under the static load. Then, the VMD approach is employed to adaptively decompose sEMG into several intrinsic mode functions to describe the information about different time-frequency scales. Furthermore, the coherence on different time-frequency scales between different sEMG signals is analyzed, and the significant coherent area index is calculated to quantitatively describe the functional coupling characteristics of the feature bands. And combining VMD with Hilbert transform, we calculate root mean square and mean instantaneous frequency (MIF) to describe the variations of energy and frequency of each muscle. The results show that coupling strengths increase with time, respectively, in beta (15-30 Hz) and gamma (30-45 Hz) band between two muscles (FDS vs FCU, FDS vs ED) during the sustained static force with low load. In addition, compared with the coupling between FDS and ED, the couplings between FDS and FCU in beta and gamma band under the condition of fatigue present more significant changes and similar trend in MIF variation with time. The obtained results reveal that the congenerous muscle is coordinated by CNS in a more synchronous way during the sustained isometric fatiguing contraction.
      通信作者: 谢平, pingx@ysu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61271142)、河北省自然科学基金(批准号:F2015203372,F2014203246)和河北省高等学校科学技术研究项目(批准号:QN2016094)资助的课题.
      Corresponding author: Xie Ping, pingx@ysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61271142), the Natural Science Foundation of Hebei Province, China (Grant Nos. F2015203372, F2014203246), and the Science and Technology Research Project of Higher Education Institutions in Hebei Province, China (Grant No. QN2016094).
    [1]

    Baker S N 2007 Curr. Opin. Neurobiol. 17 649

    [2]

    Enoka R M, Baudry S, Rudroff T 2011 J. Electromyogr. Kines. 21 208

    [3]

    Grosse P, Cassidy M J, Brown P 2002 Clin. Neurophysiol. 113 1523

    [4]

    Xie P, Song Y, Guo Z H, Chen X L, Wu X G, Su Y P, Du Y H 2016 J. Biomed. Eng. 33 244 (in Chinese) [谢平, 宋妍, 郭子晖, 陈晓玲, 吴晓光, 苏玉萍, 杜义浩 2016 生物医学工程学杂志 33 244]

    [5]

    Patino L, Omlor W, Chakarov V 2008 J. Neurophysiol. 99 1906

    [6]

    Charissou C, Vigouroux L, Berton E 2016 J. Electromyogr. Kines. 27 52

    [7]

    Stamoulis C, Chang B S 2011 33rd Annual International Conference of the IEEE EMBS Boston, USA, August 30-September 3, 2011 p5908

    [8]

    Wu Z, Huang N E 2009 Adv. Adapt. Data Analy. 1 1

    [9]

    Dragomiretskiy K, Zosso D 2014 IEEE Trans. Signal Process. 62 531

    [10]

    Xie P, Yang F M, Li X X, Yang Y, Chen X L, Zhang L T 2016 Acta Phys. Sin. 65 118701 (in Chinese) [谢平, 杨芳梅, 李欣欣, 杨勇, 陈晓玲, 张利泰 2016 物理学报 65 118701]

    [11]

    Lattimer L J, Lanovaz J L, Farthing J P 2016 J. Electromyogr. Kines. 30 231

    [12]

    Xie H, Wang Z 2006 Comput. Meth. Prog. Biol. 82 114

    [13]

    Rosenberg J R, Amjad A M, Breeze P 1989 Prog. Biophys. Mol. Biol. 53 1

    [14]

    Kattla S, Lowery M M 2010 Exp. Brain Res. 202 89

    [15]

    Omlor W, Patino L, Hepp-Reymond M C 2007 Neuroimage 34 1191

    [16]

    Baker S N, Olivier E, Lemon R N 1997 J. Physiol. 501 225

    [17]

    Salenius S, Portin K, Kajola M 1997 J. Neurophysiol. 77 3401

    [18]

    Danna-Dos Santos A, Poston B, Jesunathadas M 2010 J. Neurophysiol. 104 3576

    [19]

    Gandevia S C 2001 Physiol. Rev. 81 1725

    [20]

    Wang L J, Lu A Y, Zheng F H, Gong M X, Zhang L, Dong F 2014 China Sport Sci. 34 40 (in Chinese) [王乐军, 陆爱云, 郑樊慧, 龚铭新, 张磊, 董菲 2014 体育科学 34 40]

    [21]

    de Luca C J 1997 J. Appl. Biomech. 13 135

    [22]

    Lvnez M, Garland S J, Klass M 2008 J. Neurophysiol. 99 554

  • [1]

    Baker S N 2007 Curr. Opin. Neurobiol. 17 649

    [2]

    Enoka R M, Baudry S, Rudroff T 2011 J. Electromyogr. Kines. 21 208

    [3]

    Grosse P, Cassidy M J, Brown P 2002 Clin. Neurophysiol. 113 1523

    [4]

    Xie P, Song Y, Guo Z H, Chen X L, Wu X G, Su Y P, Du Y H 2016 J. Biomed. Eng. 33 244 (in Chinese) [谢平, 宋妍, 郭子晖, 陈晓玲, 吴晓光, 苏玉萍, 杜义浩 2016 生物医学工程学杂志 33 244]

    [5]

    Patino L, Omlor W, Chakarov V 2008 J. Neurophysiol. 99 1906

    [6]

    Charissou C, Vigouroux L, Berton E 2016 J. Electromyogr. Kines. 27 52

    [7]

    Stamoulis C, Chang B S 2011 33rd Annual International Conference of the IEEE EMBS Boston, USA, August 30-September 3, 2011 p5908

    [8]

    Wu Z, Huang N E 2009 Adv. Adapt. Data Analy. 1 1

    [9]

    Dragomiretskiy K, Zosso D 2014 IEEE Trans. Signal Process. 62 531

    [10]

    Xie P, Yang F M, Li X X, Yang Y, Chen X L, Zhang L T 2016 Acta Phys. Sin. 65 118701 (in Chinese) [谢平, 杨芳梅, 李欣欣, 杨勇, 陈晓玲, 张利泰 2016 物理学报 65 118701]

    [11]

    Lattimer L J, Lanovaz J L, Farthing J P 2016 J. Electromyogr. Kines. 30 231

    [12]

    Xie H, Wang Z 2006 Comput. Meth. Prog. Biol. 82 114

    [13]

    Rosenberg J R, Amjad A M, Breeze P 1989 Prog. Biophys. Mol. Biol. 53 1

    [14]

    Kattla S, Lowery M M 2010 Exp. Brain Res. 202 89

    [15]

    Omlor W, Patino L, Hepp-Reymond M C 2007 Neuroimage 34 1191

    [16]

    Baker S N, Olivier E, Lemon R N 1997 J. Physiol. 501 225

    [17]

    Salenius S, Portin K, Kajola M 1997 J. Neurophysiol. 77 3401

    [18]

    Danna-Dos Santos A, Poston B, Jesunathadas M 2010 J. Neurophysiol. 104 3576

    [19]

    Gandevia S C 2001 Physiol. Rev. 81 1725

    [20]

    Wang L J, Lu A Y, Zheng F H, Gong M X, Zhang L, Dong F 2014 China Sport Sci. 34 40 (in Chinese) [王乐军, 陆爱云, 郑樊慧, 龚铭新, 张磊, 董菲 2014 体育科学 34 40]

    [21]

    de Luca C J 1997 J. Appl. Biomech. 13 135

    [22]

    Lvnez M, Garland S J, Klass M 2008 J. Neurophysiol. 99 554

  • [1] 李朝锋, 王振, 刘欣宇, 杨苏辉, 徐震, 樊超阳. 基于VMD-ICA的水下激光雷达抗散射信号处理方法. 物理学报, 2024, 73(9): 094203. doi: 10.7498/aps.73.20231993
    [2] 牛晓东, 卢莉蓉, 王鉴, 韩星程, 郭树言, 王黎明. 基于改进经验模态分解域内心动物理特征识别模式分量的心电信号重建. 物理学报, 2021, 70(3): 038702. doi: 10.7498/aps.70.20201122
    [3] 景鹏, 张学军, 孙知信. 基于弹性变分模态分解的癫痫脑电信号分类方法. 物理学报, 2021, 70(1): 018702. doi: 10.7498/aps.70.20200904
    [4] 许子非, 缪维跑, 李春, 金江涛, 李蜀军. 流场非线性特征提取与混沌分析. 物理学报, 2020, 69(24): 249501. doi: 10.7498/aps.69.20200625
    [5] 刘备, 胡伟鹏, 邹孝, 丁亚军, 钱盛友. 基于变分模态分解与多尺度排列熵的生物组织变性识别. 物理学报, 2019, 68(2): 028702. doi: 10.7498/aps.68.20181772
    [6] 许子非, 岳敏楠, 李春. 优化递归变分模态分解及其在非线性信号处理中的应用. 物理学报, 2019, 68(23): 238401. doi: 10.7498/aps.68.20191005
    [7] 谢平, 杨芳梅, 李欣欣, 杨勇, 陈晓玲, 张利泰. 基于变分模态分解-传递熵的脑肌电信号耦合分析. 物理学报, 2016, 65(11): 118701. doi: 10.7498/aps.65.118701
    [8] 王莹, 侯凤贞, 戴加飞, 刘新峰, 李锦, 王俊. 基于自适应模板法的脑电信号转移熵分析. 物理学报, 2015, 64(8): 088701. doi: 10.7498/aps.64.088701
    [9] 杨剑, 陈书燊, 皇甫浩然, 梁佩鹏, 钟宁. 静息态脑电信号动态功能连接分析. 物理学报, 2015, 64(5): 058701. doi: 10.7498/aps.64.058701
    [10] 谢平, 杨芳梅, 陈晓玲, 杜义浩, 吴晓光. 基于多尺度传递熵的脑肌电信号耦合分析. 物理学报, 2015, 64(24): 248702. doi: 10.7498/aps.64.248702
    [11] 唐洁. 基于集合经验模态分解的类星体光变周期及其混沌特性分析. 物理学报, 2014, 63(4): 049701. doi: 10.7498/aps.63.049701
    [12] 侯凤贞, 戴加飞, 刘新峰, 黄晓林. 基于网络连接度指标的脑梗死患者脑电信号相同步分析. 物理学报, 2014, 63(4): 040506. doi: 10.7498/aps.63.040506
    [13] 姚文坡, 刘铁兵, 戴加飞, 王俊. 脑电信号的多尺度排列熵分析. 物理学报, 2014, 63(7): 078704. doi: 10.7498/aps.63.078704
    [14] 吴莎, 李锦, 张明丽, 王俊. 基于改进的符号转移熵的心脑电信号耦合研究. 物理学报, 2013, 62(23): 238701. doi: 10.7498/aps.62.238701
    [15] 吴勇峰, 黄绍平, 金国彬. 基于耦合Duffing振子的局部放电信号检测方法研究. 物理学报, 2013, 62(13): 130505. doi: 10.7498/aps.62.130505
    [16] 张梅, 崔超, 马千里, 干宗良, 王俊. 基于符号化部分互信息熵的多参数生物电信号的耦合分析. 物理学报, 2013, 62(6): 068704. doi: 10.7498/aps.62.068704
    [17] 沈韡, 王俊. 基于符号相对熵的心电信号时间不可逆性分析. 物理学报, 2011, 60(11): 118702. doi: 10.7498/aps.60.118702
    [18] 唐智灵, 杨小牛, 李建东. 调制无线电信号的分形特征研究. 物理学报, 2011, 60(5): 056401. doi: 10.7498/aps.60.056401
    [19] 马千里, 卞春华, 王俊. 脑电信号的标度分析及其在睡眠状态区分中的应用. 物理学报, 2010, 59(7): 4480-4484. doi: 10.7498/aps.59.4480
    [20] 邓勇, 施文康, 刘琪. 小波变换的信号分形分析及其在心电信号处理中的应用研究. 物理学报, 2002, 51(4): 759-762. doi: 10.7498/aps.51.759
计量
  • 文章访问数:  5991
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-21
  • 修回日期:  2016-11-21
  • 刊出日期:  2017-03-05

/

返回文章
返回