搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非对称光束干涉制备二维微纳光子结构研究

吕浩 尤凯 兰燕燕 高冬 赵秋玲 王霞

引用本文:
Citation:

非对称光束干涉制备二维微纳光子结构研究

吕浩, 尤凯, 兰燕燕, 高冬, 赵秋玲, 王霞

Fabrication of two-dimensional micro-nano photonic structures by symmetry-lost beams interference

Lü Hao, You Kai, Lan Yan-Yan, Gao Dong, Zhao Qiu-Ling, Wang Xia
PDF
导出引用
  • 研究了基于不同偏振组合的非对称4束和5束光干涉制备二维微纳光子结构.通过改变光束的参数组合获得了枝节状、波形状等结构.在非对称光束干涉中,光束的构型和偏振改变了波矢差分布,从而改变晶格形貌和对比度.利用CHP-C感光胶开展了全息光刻实验制备,获得了与模拟一致的光子结构.该研究为制备新颖光子结构提供了有效途径,此类光子结构还可以为制备不同类型的金属点阵结构提供模板,对新型光子器件的制备和应用研究具有一定的促进作用.
    Micro-nano photonic structures, such as meta-materials and photonic crystals, having special effects on light generation, transmission, detection and sensing on a submicron scale, play an increasingly significant role in optical information fields. Micro-nano photonic structures have great potential applications in surface laser emission, optical waveguide and high-Q laser. There are several methods to fabricate micro-nano photonic structures, including laser direct writing, electron beam direct writing, electrochemical corrosion, and holographic lithography and so on. Holographic lithography employs multi-beam interference to generate periodic patterns and records them on photosensitive materials to form typical structures. What is more, it has advantages of low cost, large area and high efficiency. However, there are still some challenges in fabricating typical micro-nano photonic structures, especially the precise optical alignment, beam polarization and control of the details of local interference pattern. A specially designed prism is employed in this work and we propose a compact symmetry-lost setup with the rapid adjustment of beam configuration and polarization. Based on the theory of multi-beam interference, symmetry-lost four-and five-beam interference with different polarizations are simulated. By changing the combination of beam configuration and polarization, novel two-dimensional micro-nano photonic structures can be achieved. The variations of azimuthal angle and polarization of beam in symmetry-lost system affect the wave vector difference, and thus changing the lattice shape and structure contrast. Branch-like and wave-like structures are generated by symmetry-lost four beams with polarizations of (90, 90, 90, 90) and five beams with polarizations of (90, 90, 90, 90, 0), respectively. An appropriate threshold is selected in simulation, such that the intensity data larger than the threshold are removed, while the smaller data are remained, which is transformed into an optical lattice pattern. The interference structures show different morphologies and structural contrasts, and have a period of several hundred nanometers. In experimental fabrication, a top-cut hexagonal prism is used to generate two-dimensional micro-nano photonic structure on CHP-C positive photoresist by single exposure. The intensity of each beam is about 18-20 mW, and the incident angle is 42. The beam polarization is adjusted by rotating a half waveplate inside the holes of the mask and structure volume fraction is determined by exposure dose controlled by beam intensity and exposure time. The scanning electron microscope images of the samples show good agreement with simulation results. This study could provide an effective method of fabricating novel photonic structures, which can be used as templates of fabricating different types of metal lattice structures, thereby promoting the development and applications of novel photonic devices.
      通信作者: 王霞, phwangxia@163.com
    • 基金项目: 山东省高等学校科技计划(批准号:J14LJ06)、山东省自然科学基金(批准号:ZR2014FP012)和国家自然科学基金(批准号:11274189,11504194)资助的课题.
      Corresponding author: Wang Xia, phwangxia@163.com
    • Funds: Project supported by the Project of Shandong Province Higher Educational Science and Technology Program, China (Grant No. J14LJ06), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2014FP012), and the National Natural Science Foundation of China (Grant Nos. 11274189, 11504194).
    [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nat. Mater. 9 707

    [4]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [5]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [6]

    Driscoll T, Basov D N, Starr A F, Smith D R 2006 Appl. Phys. Lett. 88 081101

    [7]

    Yang Y, Li Q, Wang G P 2008 Opt. Express 16 11275

    [8]

    Li Z, Zhao R, Koschny T, Kafesaki M, Alici K B, Colak E, Caglayan H, Ozbay E, Soukoulis C M 2010 Appl. Phys. Lett. 97 081901

    [9]

    Phan A H, Piao M, Park J H, Kim N 2013 Appl. Opt. 52 2385

    [10]

    Rill M S, Plet C, Thiel M, Staude I, Freymann G V, Linden S, Wegener M 2008 Nat. Mater. 7 543

    [11]

    de Vittorio M, Todaro M T, Stomeo T, Cingolani R, Cojoc D, Fabriziob E D 2004 Microelectron. Eng. 73-74 388

    [12]

    Birner A, Grning U, Ottow S, Schneider A, Mller F, Lehmann V, Foell H, Gsele U 1998 Phys. Status Solidi A 165 111

    [13]

    Campbell M, Sharp D N, Harrison M T, Denning R G 2000 Nature 404 53

    [14]

    L H, Chu C X, You K, Zhao Q L, Wang X 2017 Optik 140 25

    [15]

    Shen K, Jiang G, Mao W, Baig S, Wang M R 2013 Appl. Opt. 52 6474

    [16]

    Jimnez-Ceniceros A, Trejo-Durn M, Alvarado-Mndez E, Castao V M 2010 Opt. Commun. 283 362

    [17]

    Wang J L, Chen H M 2007 Acta Phys. Sin. 56 922 (in Chinese) [汪静丽, 陈鹤鸣 2007 物理学报 56 922]

    [18]

    Nian X Z, Chen H M 2009 Opt. Laser Technol. 7 23 (in Chinese) [年秀芝, 陈鹤鸣 2009 光学与光电技术 7 23]

    [19]

    Zeng J, Pan J Y, Dong J W, Wang H Z 2006 Acta Phys. Sin. 55 2785 (in Chinese) [曾隽, 潘杰勇, 董建文, 汪河洲 2006 物理学报 55 2785]

    [20]

    Pan J Y, Liang G Q, Mao W D, Wang H Z 2006 Acta Phys. Sin. 55 729 (in Chinese) [潘杰勇, 梁冠全, 毛卫东, 汪河洲 2006 物理学报 55 729]

    [21]

    Solak H H 2005 Microelectron. Eng. 78 410

    [22]

    Lai N D, Lin J H, Hsu C C 2007 Appl. Opt. 46 5645

    [23]

    Wang X, Xu J F, Su H M, He Y J, Jiang S J, Wang H Z 2006 Acta Phys. Sin. 55 5398 (in Chinese) [王霞, 谭永炎 2006 物理学报 55 5398]

    [24]

    Wang X, Tam W Y 2006 Acta Phys. Sin. 55 5398 (in Chinese) [王霞, 谭永炎 2006 物理学报 55 5398]

    [25]

    Wang X, Wang Z X, L H, Zhao Q L 2010 Acta Phys. Sin. 59 4656 (in Chinese) [王霞, 王自霞, 吕浩, 赵秋玲 2010 物理学报 59 4656]

    [26]

    Zhao Q L, L H, Zhang Q Y, Niu D J, Wang X L 2013 Acta Phys. Sin. 62 044208 (in Chinese) [赵秋玲, 吕浩, 张清悦, 牛东杰, 王霞 2013 物理学报 62 044208]

    [27]

    L H, Zhang Q Y, Zhao Q L, Wang X 2012 Appl. Opt. 51 302

    [28]

    Wang X, Xu J, Lee J C W, Tam W Y 2006 Appl. Phys. Lett. 88 051901

    [29]

    L H, Wang S Z, Wang X 2014 Chin. J. Lasers 41 201 (in Chinese) [吕浩, 王守智, 王霞 2014 中国激光 41 201]

  • [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nat. Mater. 9 707

    [4]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [5]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [6]

    Driscoll T, Basov D N, Starr A F, Smith D R 2006 Appl. Phys. Lett. 88 081101

    [7]

    Yang Y, Li Q, Wang G P 2008 Opt. Express 16 11275

    [8]

    Li Z, Zhao R, Koschny T, Kafesaki M, Alici K B, Colak E, Caglayan H, Ozbay E, Soukoulis C M 2010 Appl. Phys. Lett. 97 081901

    [9]

    Phan A H, Piao M, Park J H, Kim N 2013 Appl. Opt. 52 2385

    [10]

    Rill M S, Plet C, Thiel M, Staude I, Freymann G V, Linden S, Wegener M 2008 Nat. Mater. 7 543

    [11]

    de Vittorio M, Todaro M T, Stomeo T, Cingolani R, Cojoc D, Fabriziob E D 2004 Microelectron. Eng. 73-74 388

    [12]

    Birner A, Grning U, Ottow S, Schneider A, Mller F, Lehmann V, Foell H, Gsele U 1998 Phys. Status Solidi A 165 111

    [13]

    Campbell M, Sharp D N, Harrison M T, Denning R G 2000 Nature 404 53

    [14]

    L H, Chu C X, You K, Zhao Q L, Wang X 2017 Optik 140 25

    [15]

    Shen K, Jiang G, Mao W, Baig S, Wang M R 2013 Appl. Opt. 52 6474

    [16]

    Jimnez-Ceniceros A, Trejo-Durn M, Alvarado-Mndez E, Castao V M 2010 Opt. Commun. 283 362

    [17]

    Wang J L, Chen H M 2007 Acta Phys. Sin. 56 922 (in Chinese) [汪静丽, 陈鹤鸣 2007 物理学报 56 922]

    [18]

    Nian X Z, Chen H M 2009 Opt. Laser Technol. 7 23 (in Chinese) [年秀芝, 陈鹤鸣 2009 光学与光电技术 7 23]

    [19]

    Zeng J, Pan J Y, Dong J W, Wang H Z 2006 Acta Phys. Sin. 55 2785 (in Chinese) [曾隽, 潘杰勇, 董建文, 汪河洲 2006 物理学报 55 2785]

    [20]

    Pan J Y, Liang G Q, Mao W D, Wang H Z 2006 Acta Phys. Sin. 55 729 (in Chinese) [潘杰勇, 梁冠全, 毛卫东, 汪河洲 2006 物理学报 55 729]

    [21]

    Solak H H 2005 Microelectron. Eng. 78 410

    [22]

    Lai N D, Lin J H, Hsu C C 2007 Appl. Opt. 46 5645

    [23]

    Wang X, Xu J F, Su H M, He Y J, Jiang S J, Wang H Z 2006 Acta Phys. Sin. 55 5398 (in Chinese) [王霞, 谭永炎 2006 物理学报 55 5398]

    [24]

    Wang X, Tam W Y 2006 Acta Phys. Sin. 55 5398 (in Chinese) [王霞, 谭永炎 2006 物理学报 55 5398]

    [25]

    Wang X, Wang Z X, L H, Zhao Q L 2010 Acta Phys. Sin. 59 4656 (in Chinese) [王霞, 王自霞, 吕浩, 赵秋玲 2010 物理学报 59 4656]

    [26]

    Zhao Q L, L H, Zhang Q Y, Niu D J, Wang X L 2013 Acta Phys. Sin. 62 044208 (in Chinese) [赵秋玲, 吕浩, 张清悦, 牛东杰, 王霞 2013 物理学报 62 044208]

    [27]

    L H, Zhang Q Y, Zhao Q L, Wang X 2012 Appl. Opt. 51 302

    [28]

    Wang X, Xu J, Lee J C W, Tam W Y 2006 Appl. Phys. Lett. 88 051901

    [29]

    L H, Wang S Z, Wang X 2014 Chin. J. Lasers 41 201 (in Chinese) [吕浩, 王守智, 王霞 2014 中国激光 41 201]

  • [1] 白宇, 张振方, 杨海滨, 蔡力, 郁殿龙. 基于非对称吸声器的发动机声学超表面声衬. 物理学报, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [2] 绪其军, 李德林, 常琛亮, 袁操今, 冯少彤, 聂守平. 基于Q-plate的双图像非对称偏振加密. 物理学报, 2019, 68(8): 084202. doi: 10.7498/aps.68.20181902
    [3] 才啟胜, 黄旻, 韩炜, 丛麟骁, 路向宁. 外差式偏振干涉成像光谱技术研究. 物理学报, 2017, 66(16): 160702. doi: 10.7498/aps.66.160702
    [4] 李成强, 王挺峰, 张合勇, 谢京江, 刘立生, 郭劲. 光源参数及大气湍流对电磁光束传输偏振特性的影响. 物理学报, 2014, 63(10): 104201. doi: 10.7498/aps.63.104201
    [5] 穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌. 差分偏振干涉成像光谱仪Ⅱ.光学设计与分析. 物理学报, 2014, 63(11): 110705. doi: 10.7498/aps.63.110705
    [6] 穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌. 差分偏振干涉成像光谱仪I.概念原理与操作. 物理学报, 2014, 63(11): 110704. doi: 10.7498/aps.63.110704
    [7] 彭娜娜, 霍燕燕, 周侃, 贾鑫, 潘佳, 孙真荣, 贾天卿. 飞秒激光诱导自组织纳米周期结构及其光学特性的研究进展. 物理学报, 2013, 62(9): 094201. doi: 10.7498/aps.62.094201
    [8] 常强, 杨艳芳, 何英, 刘海港, 刘键. 4pi聚焦系统中振幅和相位调制的径向偏振涡旋光束聚焦特性的研究. 物理学报, 2013, 62(10): 104202. doi: 10.7498/aps.62.104202
    [9] 钟明亮, 李山, 熊祖洪, 张中月. 十字形银纳米结构的表面等离子体光子学性质. 物理学报, 2012, 61(2): 027803. doi: 10.7498/aps.61.027803
    [10] 李山, 钟明亮, 张礼杰, 熊祖洪, 张中月. 偏振方向及结构间耦合作用对空心方形银纳米结构表面等离子体共振的影响. 物理学报, 2011, 60(8): 087806. doi: 10.7498/aps.60.087806
    [11] 厉以宇, 王媛媛, 陈浩, 朱德喜, 胡川, 瞿佳. 基于二维结构薄膜的偏振选择相位光栅的研究. 物理学报, 2010, 59(7): 5110-5115. doi: 10.7498/aps.59.5110
    [12] 赵建领, 吴令安. 基于偏振叠加和干涉两种方法的可控光脉冲延时器. 物理学报, 2010, 59(5): 3260-3263. doi: 10.7498/aps.59.3260
    [13] 徐凯, 杨艳芳, 何英, 韩小红, 李春芳. 局域椭圆偏振光束强聚焦性质的研究. 物理学报, 2010, 59(9): 6125-6130. doi: 10.7498/aps.59.6125
    [14] 张淳民, 刘宁, 吴福全. 偏振干涉成像光谱仪中格兰-泰勒棱镜全视场角透过率的分析与计算. 物理学报, 2010, 59(2): 949-957. doi: 10.7498/aps.59.949
    [15] 熊平新, 贾鑫, 贾天卿, 邓莉, 冯东海, 孙真荣, 徐至展. 三光束飞秒激光干涉在GaP,ZnSe表面诱导二维复合纳米-微米周期结构. 物理学报, 2010, 59(1): 311-316. doi: 10.7498/aps.59.311
    [16] 刘 欢, 姚建铨, 李恩邦. 激光全息法制作二、三维光子晶体的模拟计算及禁带分析. 物理学报, 2006, 55(5): 2286-2292. doi: 10.7498/aps.55.2286
    [17] 沈晓鹏, 韩 奎, 沈义峰, 李海鹏, 肖正伟, 郑 健. 二维光子晶体中与电磁波偏振态无关的自准直. 物理学报, 2006, 55(6): 2760-2764. doi: 10.7498/aps.55.2760
    [18] 周国泉. 任意线偏振高斯光束的非傍轴传输. 物理学报, 2005, 54(10): 4710-4717. doi: 10.7498/aps.54.4710
    [19] 罗志勇, 杨丽峰, 陈允昌. 基于多光束干涉原理的相移算法研究. 物理学报, 2005, 54(7): 3051-3057. doi: 10.7498/aps.54.3051
    [20] 李蓉, 任坤, 任晓斌, 周静, 刘大禾. 一维光子晶体带隙结构对不同偏振态的角度和波长响应. 物理学报, 2004, 53(8): 2520-2525. doi: 10.7498/aps.53.2520
计量
  • 文章访问数:  4340
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-06
  • 修回日期:  2017-08-06
  • 刊出日期:  2017-11-05

/

返回文章
返回