搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分布损耗加载回旋行波管多模稳态注波互作用理论与比较证实

罗积润 唐彦娜 樊宇 彭澍源 薛谦忠

引用本文:
Citation:

分布损耗加载回旋行波管多模稳态注波互作用理论与比较证实

罗积润, 唐彦娜, 樊宇, 彭澍源, 薛谦忠

Comparative demonstration of multimode steady-state theory for the gyrotron traveling-wave tube based on a distributed loss-loaded metal cylindrical waveguide

Luo Ji-Run, Tang Yan-Na, Fan Yu, Peng Shu-Yuan, Xue Qian-Zhong
PDF
导出引用
  • 基于目前国际上实验研究的均匀介质加载和周期介质加载结构,建立了一种分布式损耗加载回旋行波管(gyro-TWT)多模稳态注波互作用理论.利用这一理论,以TE01模式基波gyro-TWT注波互作用为例,将Ka和W波段的理论结果与实验和软件仿真进行比较,以证实理论的合理性.
    Gyrotron traveling-wave tube (gyro-TWT) is capable of generating high-power microwave radiation in a millimeter wave range. It is one of the most promising candidates for the applications in the millimeter wave radar, communication systems, and environmental monitoring. The gyro-TWT can work at high frequency and produce high power output with high order modes. Although the high mode gyro-TWT can work at high frequency and produce high power output, the instability problem is a main factor to prevent the gyro-TWT performance from further improving and hinder this device from being put into the practical application. The earlier research of the instability primarily concentrated on the single-mode situation, which cannot be used to analyze the mutual effects between the other oscillation modes and the operating mode. Hence, it is important for academic study and engineering application to solve the mode competition problem. In this paper, based on lossy uniform/periodic dielectric-loaded metal cylindrical waveguide usually used in the international academic analysis and engineering research, a multimode steady-state beam wave interaction theory for gyro-TWT is established, which can consider the mutual effects between the other oscillation modes and the operating mode. As application examples, under the same condition of geometrical and electrical parameters, the theoretical results of the beam wave interaction for the TE01 fundamental mode gyro-TWTs are compared with the experimental results reported by NRL and IECAS for Ka band and those simulated with Magic code for W band in order to demonstrate the rationality of the theory. The results show that the theoretical results are in good agreement with the experimental and simulated ones. For the NRL design, when the velocity spread is 9.6%, the maximum output power from the theory is 127 kW at 34.09 GHz with a gain of 47.4 dB, an efficiency of 17.6%, and a -3 dB bandwidth of 1.01 GHz, and an NRL measured maximum output power is 130 kW at 34 GHz with a gain of 47.5 dB, an efficiency of 18% and a -3 dB bandwidth of 1.0 GHz. The maximum difference between the theory and the experiments occurs near the frequency of 34 GHz, the measured power by NRL is 127 kW and the calculated power is 118 kW, the relative error between the theory and the experiment is 8.5%. For the IECAS design, the simulated maximum output power from the theory is 113.73 kW at 33.85 GHz with a -3 dB bandwidth of 1.72 GHz when the velocity spread is 7%. The measured peak output power by IECAS is 110 kW at 33.88 GHz with a -3 dB bandwidth of 1.75 GHz. For a W band TE01 fundamental mode gyro-TWT design, the saturated output power is 112 kW at a frequency of 94.5 GHz with a gain of 34.28 dB and -3 dB bandwidth of about 4.1 GHz, and the saturated output power calculated with Magic code is 106.7 kW with a gain of 34.11 dB and 3 dB bandwidth of 3.9 GHz, the maximum relative errors between the theory and experiment are both about 5% for the output power and the bandwidth.
      通信作者: 罗积润, luojirun@mail.ie.ac.cn
      Corresponding author: Luo Ji-Run, luojirun@mail.ie.ac.cn
    [1]

    Luce T C 2002 IEEE Trans. Plasma Sci. 30 734

    [2]

    Kalaria P C, Kartikeyan M V, Thumm M 2014 IEEE Trans. Plasma Sci. 42 1522

    [3]

    Thumm M 2005 Int. J. Infr. Millim. Waves 26 483

    [4]

    Chu K R 2004 Rev. Mod. Phys. 76 489

    [5]

    Thumm M 2016 State-of-the-Art of High Power gyro-Devices and Free Electron Masers. Update 2015 (KIT Scientific Reports; 7717. Karlsruhe (Germany: Wissenschaftliche Berichte FZKA)

    [6]

    Bratman V, Glyavin M, Idehara T, Kalynov Y, Luchinin Y, Manuilov A, Mitsudo S, Ogawa I, Saito T, Tatematsu Y, Zapevalov V 2009 IEEE Trans. Plasma Sci. 37 36

    [7]

    Flyagin V A, Gaponov A V, Petelin M I, Yulpatov V K 1977 IEEE Trans. Microwave Theory and Techniques. 25 514

    [8]

    Parker R K, Abrams R H, Danly B G, Levush B 2002 IEEE Trans. Microwave Theory and Techniques 50 835

    [9]

    Granatstein V L, Parker R K, Armstrong C M 1999 Proc. IEEE 87 702

    [10]

    Chu K R 2002 IEEE Trans. Plasma Sci. 30 903

    [11]

    Calame J P, Garven M, Danly B G, Levush B, Nguyen K T 2002 IEEE Trans. Electron Dev. 49 1469

    [12]

    Nusinovich G S 1999 IEEE Trans. Plasma Sci. 27 313

    [13]

    Park G S, Choi J J, Park S Y, Armstrong C M, Ganguly A K 1995 Phys. Rev. Lett. 74 2399

    [14]

    Sirigiri J R, Shapiro M A, Temkin R J 2003 Phys. Rev. Lett. 90 258

    [15]

    Thottappan M, Singh S, Jain P K 2016 IEEE Trans. Electron Dev. 63 2118

    [16]

    Denisov G G, Bratman V L, Phelps A, Samsonov S V 1998 IEEE Trans. Plasma Sci. 26 508

    [17]

    Samsonov S V, Gachev I G, Denisov G G, Bogdashov A A, Mishakin S V, Fiks A S, Soluyanova E A, Tai E M, Dominyuk Y V, Levitan B A, Murzin V N 2014 IEEE Trans. Electron Dev. 61 4264

    [18]

    Chu K R, Barnett L R, Chen H Y, Chen S H, Wang C 1995 Phys. Rev. Lett. 74 1103

    [19]

    Chu K R, Chang T H, Barnett L R, Che S H 1999 IEEE Trans. Plasma Sci. 27 391

    [20]

    Yan R, Tang Y, Luo Y 2014 IEEE Trans. Electron Dev. 61 2564

    [21]

    Caplan M, Lin A T, Chu K R 1982 Int. J. Electron. 53 659

    [22]

    Chu K R, Barnett L R, Lau W K, Chang L H, Lin A T, Lin C C 1991 Phys. Fluids B: Plasma Phys 3 2403

    [23]

    Latham P E, Nusinovich G S 1995 Phys. Plasmas 2 3494

    [24]

    Latham P E, Nusinovich G S 1995 Phys. Plasmas 2 3511

    [25]

    Nusinovich G S, Walter M, Zhao J 1998 Phys. Rev.. 58 6594

    [26]

    Peng S, Wang Q, Luo J, Zhang Z 2014 Acta Phys. Sin. 63 207401

    [27]

    Tang Y, Luo J, Xue Q, Fan Y, Wang X, Peng S, Li S 2017 IEEE Trans. Electron Dev. 64 543

    [28]

    Harrington R F 1961 Time Harmonic Electromagnetic Fields (New York: McGraw-Hill)

    [29]

    Pozar D M 1998 Microwave Engineering (New York: Wiley)

    [30]

    Tigelis I G, Vomvoridis J L, Tzima S 1998 IEEE Trans. Plasma. Sci. 26 922

    [31]

    Tang Y, Luo Y, Xu Y, Yan R 2014 J. Infr. Millim. THz Waves 35 799

    [32]

    Xue Q Z, Du C H, Liu P K, Zhang S C 2012 Proc. IEEE IVEC. 421

  • [1]

    Luce T C 2002 IEEE Trans. Plasma Sci. 30 734

    [2]

    Kalaria P C, Kartikeyan M V, Thumm M 2014 IEEE Trans. Plasma Sci. 42 1522

    [3]

    Thumm M 2005 Int. J. Infr. Millim. Waves 26 483

    [4]

    Chu K R 2004 Rev. Mod. Phys. 76 489

    [5]

    Thumm M 2016 State-of-the-Art of High Power gyro-Devices and Free Electron Masers. Update 2015 (KIT Scientific Reports; 7717. Karlsruhe (Germany: Wissenschaftliche Berichte FZKA)

    [6]

    Bratman V, Glyavin M, Idehara T, Kalynov Y, Luchinin Y, Manuilov A, Mitsudo S, Ogawa I, Saito T, Tatematsu Y, Zapevalov V 2009 IEEE Trans. Plasma Sci. 37 36

    [7]

    Flyagin V A, Gaponov A V, Petelin M I, Yulpatov V K 1977 IEEE Trans. Microwave Theory and Techniques. 25 514

    [8]

    Parker R K, Abrams R H, Danly B G, Levush B 2002 IEEE Trans. Microwave Theory and Techniques 50 835

    [9]

    Granatstein V L, Parker R K, Armstrong C M 1999 Proc. IEEE 87 702

    [10]

    Chu K R 2002 IEEE Trans. Plasma Sci. 30 903

    [11]

    Calame J P, Garven M, Danly B G, Levush B, Nguyen K T 2002 IEEE Trans. Electron Dev. 49 1469

    [12]

    Nusinovich G S 1999 IEEE Trans. Plasma Sci. 27 313

    [13]

    Park G S, Choi J J, Park S Y, Armstrong C M, Ganguly A K 1995 Phys. Rev. Lett. 74 2399

    [14]

    Sirigiri J R, Shapiro M A, Temkin R J 2003 Phys. Rev. Lett. 90 258

    [15]

    Thottappan M, Singh S, Jain P K 2016 IEEE Trans. Electron Dev. 63 2118

    [16]

    Denisov G G, Bratman V L, Phelps A, Samsonov S V 1998 IEEE Trans. Plasma Sci. 26 508

    [17]

    Samsonov S V, Gachev I G, Denisov G G, Bogdashov A A, Mishakin S V, Fiks A S, Soluyanova E A, Tai E M, Dominyuk Y V, Levitan B A, Murzin V N 2014 IEEE Trans. Electron Dev. 61 4264

    [18]

    Chu K R, Barnett L R, Chen H Y, Chen S H, Wang C 1995 Phys. Rev. Lett. 74 1103

    [19]

    Chu K R, Chang T H, Barnett L R, Che S H 1999 IEEE Trans. Plasma Sci. 27 391

    [20]

    Yan R, Tang Y, Luo Y 2014 IEEE Trans. Electron Dev. 61 2564

    [21]

    Caplan M, Lin A T, Chu K R 1982 Int. J. Electron. 53 659

    [22]

    Chu K R, Barnett L R, Lau W K, Chang L H, Lin A T, Lin C C 1991 Phys. Fluids B: Plasma Phys 3 2403

    [23]

    Latham P E, Nusinovich G S 1995 Phys. Plasmas 2 3494

    [24]

    Latham P E, Nusinovich G S 1995 Phys. Plasmas 2 3511

    [25]

    Nusinovich G S, Walter M, Zhao J 1998 Phys. Rev.. 58 6594

    [26]

    Peng S, Wang Q, Luo J, Zhang Z 2014 Acta Phys. Sin. 63 207401

    [27]

    Tang Y, Luo J, Xue Q, Fan Y, Wang X, Peng S, Li S 2017 IEEE Trans. Electron Dev. 64 543

    [28]

    Harrington R F 1961 Time Harmonic Electromagnetic Fields (New York: McGraw-Hill)

    [29]

    Pozar D M 1998 Microwave Engineering (New York: Wiley)

    [30]

    Tigelis I G, Vomvoridis J L, Tzima S 1998 IEEE Trans. Plasma. Sci. 26 922

    [31]

    Tang Y, Luo Y, Xu Y, Yan R 2014 J. Infr. Millim. THz Waves 35 799

    [32]

    Xue Q Z, Du C H, Liu P K, Zhang S C 2012 Proc. IEEE IVEC. 421

  • [1] 曾造金, 马乔生, 胡林林, 蒋艺, 胡鹏, 陈洪斌. G波段扩展互作用速调管的理论分析与设计. 物理学报, 2019, 68(15): 154102. doi: 10.7498/aps.68.20190264
    [2] 曾造金, 马乔生, 胡林林, 蒋艺, 胡鹏, 雷文强, 马国武, 陈洪斌. W波段带状注扩展互作用速调管放大器的理论研究与数值模拟. 物理学报, 2019, 68(24): 248401. doi: 10.7498/aps.68.20190907
    [3] 颜胜美, 苏伟, 王亚军, 徐翱, 陈樟, 金大志, 向伟. 0.14THz基模多注折叠波导行波管的理论与模拟研究. 物理学报, 2014, 63(23): 238404. doi: 10.7498/aps.63.238404
    [4] 彭澍源, 王秋实, 张兆传, 罗积润. 回旋行波管多模稳态理论及初步应用. 物理学报, 2014, 63(20): 208401. doi: 10.7498/aps.63.208401
    [5] 颜卫忠, 胡玉禄, 李建清, 杨中海, 田云先, 李斌. 基于三端口网络模型的折叠波导行波管注波互作用理论研究. 物理学报, 2014, 63(23): 238403. doi: 10.7498/aps.63.238403
    [6] 薛智浩, 刘濮鲲, 杜朝海. W波段螺旋波纹波导回旋行波管注波互作用的非线性分析. 物理学报, 2014, 63(8): 080201. doi: 10.7498/aps.63.080201
    [7] 刘漾, 魏彦玉, 沈飞, 许雄, 刘洋, 赖剑强, 黄明智, 唐涛, 宫玉彬. 开敞型角向周期加载金属柱圆波导的注波互作用线性理论研究. 物理学报, 2012, 61(16): 168401. doi: 10.7498/aps.61.168401
    [8] 白春江, 李建清, 胡玉禄, 杨中海, 李斌. 利用等效电路模型计算耦合腔行波管注-波互作用. 物理学报, 2012, 61(17): 178401. doi: 10.7498/aps.61.178401
    [9] 薛智浩, 刘濮鲲, 杜朝海, 李铮迪. W波段螺旋波纹波导回旋行波管注波互作用的非线性分析. 物理学报, 2012, 61(17): 170201. doi: 10.7498/aps.61.170201
    [10] 郭建华, 喻胜, 李宏福, 张天钟, 雷朝军, 李想, 张颜颜. 回旋速调管注波互作用瞬态非线性理论与模型研究. 物理学报, 2011, 60(9): 090301. doi: 10.7498/aps.60.090301
    [11] 张小锋, 阮存军, 罗积润, 阮望, 赵鼎. 带状注速调管注波互作用及其计算程序的研究. 物理学报, 2011, 60(6): 068402. doi: 10.7498/aps.60.068402
    [12] 何俊, 魏彦玉, 宫玉彬, 段兆云, 路志刚, 王文祥. 脊加载曲折波导行波管注波互作用的线性理论研究. 物理学报, 2010, 59(9): 6659-6665. doi: 10.7498/aps.59.6659
    [13] 杜朝海, 刘濮鲲, 薛谦忠. 基于损耗介质加载波导的回旋行波管放大器的互作用分析. 物理学报, 2010, 59(7): 4612-4619. doi: 10.7498/aps.59.4612
    [14] 彭维峰, 胡玉禄, 杨中海, 李建清, 陆麒如, 李斌. 螺旋线行波管注波互作用时域理论. 物理学报, 2010, 59(12): 8478-8483. doi: 10.7498/aps.59.8478
    [15] 郝保良, 肖刘, 刘濮鲲, 李国超, 姜勇, 易红霞, 周伟. 螺旋线行波管三维频域非线性注波互作用的计算. 物理学报, 2009, 58(5): 3118-3124. doi: 10.7498/aps.58.3118
    [16] 孙海燕, 焦重庆, 罗积润. 回旋行波放大器输出端反射对注-波互作用的影响. 物理学报, 2009, 58(2): 925-929. doi: 10.7498/aps.58.925
    [17] 胡玉禄, 杨中海, 李建清, 李斌, 高鹏, 金晓林. 螺旋线行波管三维多频非线性理论分析和数值模拟. 物理学报, 2009, 58(9): 6665-6670. doi: 10.7498/aps.58.6665
    [18] 赵 鼎, 丁耀根, 王 勇. 速调管2.5维非线性注波互作用程序的研究. 物理学报, 2007, 56(6): 3324-3331. doi: 10.7498/aps.56.3324
    [19] 李建清, 莫元龙. 行波管中慢电磁行波与电子注非线性互作用普遍理论. 物理学报, 2006, 55(8): 4117-4122. doi: 10.7498/aps.55.4117
    [20] 喻 胜, 李宏福, 谢仲怜, 罗 勇. 渐变复合腔回旋管高次谐波注-波互作用非线性模拟. 物理学报, 2000, 49(12): 2455-2459. doi: 10.7498/aps.49.2455
计量
  • 文章访问数:  5674
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-13
  • 修回日期:  2017-10-01
  • 刊出日期:  2018-01-05

/

返回文章
返回