搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于纠缠见证的路径纠缠微波检测方法

朱浩男 吴德伟 李响 王湘林 苗强 方冠

引用本文:
Citation:

基于纠缠见证的路径纠缠微波检测方法

朱浩男, 吴德伟, 李响, 王湘林, 苗强, 方冠

Path-entanglement microwave signals detecting method based on entanglement witness

Zhu Hao-Nan, Wu De-Wei, Li Xiang, Wang Xiang-Lin, Miao Qiang, Fang Guan
PDF
导出引用
  • 提出了一种基于纠缠见证的路径纠缠微波信号检测方法.路径纠缠微波是微波频段上的连续变量纠缠,介绍了利用微波压缩态和微波分束器制备路径纠缠微波的方法.根据部分转置正定判据以及2 2纠缠态密度矩阵的部分转置具有负本征值的性质,分别对常见的两种2 2纠缠进行了纠缠见证算符的构造,用于对两路信号是否为纠缠态进行判定.将连续变量纠缠的路径纠缠微波分解为大量2 2纠缠子系统叠加的纠缠态,证明其能够利用所构造的2 2纠缠见证算符来检测路径纠缠微波.同时分析了微波分束器的作用,并利用微波分束器设计了一种用于检测路径纠缠微波信号的实验方案,并在理论上分析了纠缠检测所得到的结果.结果表明,该方法能够有效检测路径纠缠微波信号,降低了检测的复杂度和计算量.本文的研究为纠缠微波的检测提供了思路.
    In recent years, the great progress of studying the quantum entanglement has been made. In the field of optics, the great success has been achieved in quantum entanglement theory and technology. Then researchers concentrate on the microwave frequency band whose frequency is lower than that of optical frequency band. The signal in the microwave frequency band has a longer wavelength, and it has the diffraction capability that the optical signal does not possess. Furthermore, it can spread further in complex environments. Now it is possible to experimentally produce squeezed state of microwave signals and spatially separated path-entangled microwave signals. It is an important issue to judge whether the microwave signals received through dual paths are in entanglement state. In this paper, we firstly introduce the method of using squeezed state of microwave and microwave beam splitter to prepare path-entangled microwave signals. Then we use entanglement witness method to detect entanglement. Through constructing the entanglement witness operator in path-entangled microwave signals, the entanglement of path-entangled microwave signals can be effectively detected. We decompose the expression of the continuous variables path-entangled microwave signals into a large number of 2 2 entangled superposition states, deduce an entangled witness operator of path-entangled microwave signals based on the principle of partial transpose criterion and entanglement witnessing, and prove that the entangled witness can be used to detect the path-entangled microwave signals. Finally, we propose a physical verification of path-entangled microwave signal entanglement. The verification can be realized as follows:firstly, we reverse the phase of a received quantum-state microwave signal by utilizing continuous variable controlled phase gate in a range of 0-, then we send two microwave signals into the two input ports of the microwave beam splitter, and we operate coincidence counting of microwave photons on the two output ports after entanglement microwave signals have passed through the microwave splitter. By analyzing the results of the whole process, we have the following conclusions:if the coincidence rate of two input signals is higher than that of non-entangled microwave signals under the same power, signals can be counted as entanglement. The proposed method can detect the entangled microwave signals more efficiently than the conventional methods, such as quantum state reconstruction, and thus reduce the detection and computational complexity. The entanglement of the two microwave quantum state signals can be observed directly by using this method. This paper provides a new idea for detecting the path-entangled microwave signals.
    • 基金项目: 国家自然科学基金(批准号:61573372,61603413)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61573372, 61603413).
    [1]

    Johansson 2012 Physics 5 103120

    [2]

    Herrmann L G, Portier F, Roche P, Levy Yeyati A, Kontos T, Strunk C 2010 Phys. Rev. Lett. 104 026801

    [3]

    Recher P, Sukhorakov E V, Loss D 2001 Phys. Rev. B 63 165314

    [4]

    Ou Z Y, Pereira S F, Kimble H J, Peng K C 1992 Phys. Rev. Lett. 68 3663

    [5]

    Gisin N, Thew R 2007 Nat. Photon. 1 165

    [6]

    Zhou C H, Qian W P 2015 Radar Sci. Tech. 13 457 (in Chinese)[周城宏, 钱卫平 2015 雷达科学与技术 13 457]

    [7]

    Zagoskin A M, Il'ichev E, McMutcheon M W, Young J F, Nori F 2008 Phys. Rev. Lett. 101 253602

    [8]

    Eichler C, Bozyigit D, Lang C, Baur M, Steffen L, Fink J M, Filipp S, Wallraff A 2011 Phys. Rev. Lett. 107 113601

    [9]

    Johansson R, Johansson G, Wilson C M, Delsing P, Nori F 2013 Phys. Rev. A 87 043804

    [10]

    Menzel E P 2013 Ph. D. Dissertation (Munich:Technic University of Munich)

    [11]

    Eder P 2012 Ph. D. Dissertation (Munich:Technic University of Munich)

    [12]

    Roy A, Jiang L, Stone A D, Devoret M 2015 Phys. Rev. Lett. 115 150503

    [13]

    Fedorov K G, Zhong L, Pogorzalek S, Eder P, Fischer M, Goetz J, Xie E, Wulschner F, Inomata K, Yamamoto T, Nakamura Y, Di Candia R, Las Heras U, Sanz M, Solano E, Menzel E P, Deppe F, Marx A, Gross R 2016 Phys. Rev. Lett. 117 020502

    [14]

    Cavalcanti D, Brandao F G S L, Cunha M O T 2005 Phys. Rev. A 72 040303

    [15]

    Horodecki M, Horodecki P, Horodecki R 1996 Phys. Lett. A 223 1

    [16]

    Hyllus P, Ghne O, Bruss D, Lewenstein M 2005 Phys. Rev. A 72 012321

    [17]

    Mariantoni M, Menzel E P, Deppe F, Araque-Caballero M A, Baust A, Niemczyk T, Hoffmann E, Solano E, Marx A, Gross R 2010 Phys. Rev. Lett. 105 133601

    [18]

    Premaratne S P, Wellstood F C, Palmer B S 2017 Nat. Commun. 8 14148

    [19]

    Li X, Wu D W, Wang X, Miao Q, Chen K, Yang C Y 2016 Acta Phys. Sin. 65 114204 (in Chinese)[李响, 吴德伟, 王希, 苗强, 陈坤, 杨春燕 2016 物理学报 65 114204]

    [20]

    Kim M S, Son W, Buzek V, Knight P L 2002 Phys. Rev. A 65 032323

    [21]

    Hoffmann E, Deppe F, Niemczyk T, Wirth T, Menzel E P 2010 Appl. Phys. Lett. 97 222508

    [22]

    Peres A 1996 Phys. Rev. Lett. 77 1413

    [23]

    Barenco A, Bennett C H, Cleve R, DiVincenzo D P, Margolus N, Shor P, Sleator T, Smolin J, Weinfurter H 1995 Phys. Rev. A 52 3457

    [24]

    Wang Z W, Li J, Huang Y F, Zhang Y S, Ren X F, Zhang P, Guo G C 2006 Phys. Lett. A 372 106

  • [1]

    Johansson 2012 Physics 5 103120

    [2]

    Herrmann L G, Portier F, Roche P, Levy Yeyati A, Kontos T, Strunk C 2010 Phys. Rev. Lett. 104 026801

    [3]

    Recher P, Sukhorakov E V, Loss D 2001 Phys. Rev. B 63 165314

    [4]

    Ou Z Y, Pereira S F, Kimble H J, Peng K C 1992 Phys. Rev. Lett. 68 3663

    [5]

    Gisin N, Thew R 2007 Nat. Photon. 1 165

    [6]

    Zhou C H, Qian W P 2015 Radar Sci. Tech. 13 457 (in Chinese)[周城宏, 钱卫平 2015 雷达科学与技术 13 457]

    [7]

    Zagoskin A M, Il'ichev E, McMutcheon M W, Young J F, Nori F 2008 Phys. Rev. Lett. 101 253602

    [8]

    Eichler C, Bozyigit D, Lang C, Baur M, Steffen L, Fink J M, Filipp S, Wallraff A 2011 Phys. Rev. Lett. 107 113601

    [9]

    Johansson R, Johansson G, Wilson C M, Delsing P, Nori F 2013 Phys. Rev. A 87 043804

    [10]

    Menzel E P 2013 Ph. D. Dissertation (Munich:Technic University of Munich)

    [11]

    Eder P 2012 Ph. D. Dissertation (Munich:Technic University of Munich)

    [12]

    Roy A, Jiang L, Stone A D, Devoret M 2015 Phys. Rev. Lett. 115 150503

    [13]

    Fedorov K G, Zhong L, Pogorzalek S, Eder P, Fischer M, Goetz J, Xie E, Wulschner F, Inomata K, Yamamoto T, Nakamura Y, Di Candia R, Las Heras U, Sanz M, Solano E, Menzel E P, Deppe F, Marx A, Gross R 2016 Phys. Rev. Lett. 117 020502

    [14]

    Cavalcanti D, Brandao F G S L, Cunha M O T 2005 Phys. Rev. A 72 040303

    [15]

    Horodecki M, Horodecki P, Horodecki R 1996 Phys. Lett. A 223 1

    [16]

    Hyllus P, Ghne O, Bruss D, Lewenstein M 2005 Phys. Rev. A 72 012321

    [17]

    Mariantoni M, Menzel E P, Deppe F, Araque-Caballero M A, Baust A, Niemczyk T, Hoffmann E, Solano E, Marx A, Gross R 2010 Phys. Rev. Lett. 105 133601

    [18]

    Premaratne S P, Wellstood F C, Palmer B S 2017 Nat. Commun. 8 14148

    [19]

    Li X, Wu D W, Wang X, Miao Q, Chen K, Yang C Y 2016 Acta Phys. Sin. 65 114204 (in Chinese)[李响, 吴德伟, 王希, 苗强, 陈坤, 杨春燕 2016 物理学报 65 114204]

    [20]

    Kim M S, Son W, Buzek V, Knight P L 2002 Phys. Rev. A 65 032323

    [21]

    Hoffmann E, Deppe F, Niemczyk T, Wirth T, Menzel E P 2010 Appl. Phys. Lett. 97 222508

    [22]

    Peres A 1996 Phys. Rev. Lett. 77 1413

    [23]

    Barenco A, Bennett C H, Cleve R, DiVincenzo D P, Margolus N, Shor P, Sleator T, Smolin J, Weinfurter H 1995 Phys. Rev. A 52 3457

    [24]

    Wang Z W, Li J, Huang Y F, Zhang Y S, Ren X F, Zhang P, Guo G C 2006 Phys. Lett. A 372 106

  • [1] 卫容宇, 李军, 张大命, 王炜皓. 纠缠态量子探测系统的恒虚警检测方法研究. 物理学报, 2022, 71(1): 010303. doi: 10.7498/aps.71.20211121
    [2] 卫容宇, 李军, 张大命, 王炜皓. 纠缠态量子探测系统的恒虚警检测方法研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211121
    [3] 魏天丽, 吴德伟, 杨春燕, 罗均文, 李响, 朱浩男. 基于光子计数的纠缠微波压缩角锁定. 物理学报, 2019, 68(9): 090301. doi: 10.7498/aps.68.20182077
    [4] 罗均文, 吴德伟, 李响, 朱浩男, 魏天丽. 微波连续变量极化纠缠. 物理学报, 2019, 68(6): 064204. doi: 10.7498/aps.68.20181911
    [5] 李响, 吴德伟, 苗强, 朱浩男, 魏天丽. 纠缠微波信号的特性及表示方法. 物理学报, 2018, 67(24): 240301. doi: 10.7498/aps.67.20181595
    [6] 王湘林, 吴德伟, 李响, 朱浩男, 陈坤, 方冠. 一种生成质量最优路径纠缠微波信号的压缩参量选择方法. 物理学报, 2017, 66(23): 230302. doi: 10.7498/aps.66.230302
    [7] 宗晓岚, 杨名. 多粒子纠缠的保护方案. 物理学报, 2016, 65(8): 080303. doi: 10.7498/aps.65.080303
    [8] 李响, 吴德伟, 王希, 苗强, 陈坤, 杨春燕. 一种基于von Neumann熵的双路径纠缠量子微波信号生成质量评估方法. 物理学报, 2016, 65(11): 114204. doi: 10.7498/aps.65.114204
    [9] 高太长, 宋堃, 刘西川, 印敏, 刘磊, 姜世泰. 基于微波链路的路径雨强反演方法及实验研究. 物理学报, 2015, 64(17): 174301. doi: 10.7498/aps.64.174301
    [10] 宋明玉, 吴耀德. 微波驱动双模四能级单原子中连续变量纠缠的制备. 物理学报, 2013, 62(6): 064207. doi: 10.7498/aps.62.064207
    [11] 刘其功, 计新. 相位阻尼通道下初始纠缠对纠缠演化的影响. 物理学报, 2012, 61(23): 230303. doi: 10.7498/aps.61.230303
    [12] 王海霞, 殷雯, 王芳卫. 耦合量子点中的纠缠测量. 物理学报, 2010, 59(8): 5241-5245. doi: 10.7498/aps.59.5241
    [13] 李体俊. 纠缠态投影算符的积分. 物理学报, 2009, 58(6): 3665-3669. doi: 10.7498/aps.58.3665
    [14] 夏云杰, 高德营. 纠缠相干态及其非经典特性. 物理学报, 2007, 56(7): 3703-3708. doi: 10.7498/aps.56.3703
    [15] 冯发勇, 张 强. 基于超纠缠交换的量子密钥分发. 物理学报, 2007, 56(4): 1924-1927. doi: 10.7498/aps.56.1924
    [16] 李艳玲, 冯 健, 於亚飞. 量子纠缠态的普适远程克隆. 物理学报, 2007, 56(12): 6797-6802. doi: 10.7498/aps.56.6797
    [17] 刘传龙, 郑亦庄. 纠缠相干态的量子隐形传态. 物理学报, 2006, 55(12): 6222-6228. doi: 10.7498/aps.55.6222
    [18] 刘成周, 赵 峥. Gibbons-Maeda dilaton 黑洞的纠缠熵. 物理学报, 2006, 55(4): 1607-1615. doi: 10.7498/aps.55.1607
    [19] 石名俊, 杜江峰, 朱栋培. 量子纯态的纠缠度. 物理学报, 2000, 49(5): 825-829. doi: 10.7498/aps.49.825
    [20] 石名俊, 杜江峰, 朱栋培, 阮图南. 混合纠缠态的几何描述. 物理学报, 2000, 49(10): 1912-1918. doi: 10.7498/aps.49.1912
计量
  • 文章访问数:  6602
  • PDF下载量:  291
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-30
  • 修回日期:  2017-11-27
  • 刊出日期:  2019-02-20

/

返回文章
返回