搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PS3000-b-PAA5000球形胶束温度效应的原位小角X射线散射技术研究

金鑫 杨春明 滑文强 李怡雯 王劼

引用本文:
Citation:

PS3000-b-PAA5000球形胶束温度效应的原位小角X射线散射技术研究

金鑫, 杨春明, 滑文强, 李怡雯, 王劼

Temperature dependence of spherical micelles of PS3000-b-PAA5000 studied by in-situ small angle X-ray scattering

Jin Xin, Yang Chun-Ming, Hua Wen-Qiang, Li Yi-Wen, Wang Jie
PDF
导出引用
  • 应用小角X射线散射技术(SAXS)对两亲嵌段共聚物聚苯乙烯聚丙烯酸(PS-b-PAA)胶束形貌的温度影响进行了原位表征.SAXS结果表明:随着水含量的增加,粒子尺寸相应增加;对于水含量10%的PS3000-b-PAA5000胶束溶液,发现了明显的SAXS双峰现象;双峰的位置不随着温度的变化而改变,但是peak 1和peak 2的相对强度随着温度发生了减弱和增强的交错变化;相邻的SAXS双峰说明在PS3000-b-PAA5000胶束溶液中最初形成的粒子尺寸并不是均匀的,主要分为尺寸极其相近的两种球形粒子;随着温度的升高,粒径大小不同的两种粒子存在着一种消融和生长的过程,并且保持着一个相同的归一化动态平衡速率.
    Amphiphilic block copolymer has a character that it spontaneously self-assembles into various micellar morphologies when dissolved in selective solvents with different proportions. Amphiphilic block copolymer has wide potential applications in drug delivery such as the targeting delivery, controlled release, molecular recognition, etc. Poly (styrene)-block-poly (acrylic acid) (PS-b-PAA) is a representative amphiphilic block copolymer whose self-assembly in the selective solvents has been widely studied during the past years. Micellar morphology of PS-b-PAA sensitive to temperature, and temperature effect of PS-b-PAA are of great importance for the drug delivery. However, the micellar morphologies of PS-b-PAA have been investigated mainly at the room temperature so far. The understanding is still limited to micellar morphology of PS-b-PAA in the varying temperature processes. In the present work, an investigation of the relationship between micellar morphology of PS-b-PAA and the temperature is conducted by using in-situ small-angle X-ray scattering (in-situ SAXS). The SAXS experiments are performed on the BL19U2 beamline of Shanghai Synchrotron Radiation Facility. The energy is selected to be 10 keV and the wave length is 0.1033 nm. The two-dimensional (2D) SAXS patterns are recorded by Pilatus 1 M with a pixel size of 172 m172 m. A sample-to-detector distance of 5340 mm is chosen, giving access to a range of scattering vectors q of 0.11-0.89 nm-1. The temperatures of the specimens are monitored by using a Linkam thermal stage THMS600 (Linkam Scientific Instruments). One-dimensional (1D) integrated intensity curves are obtained from the 2D SAXS patterns by employing the Fit2D software. The PS-b-PAAs (PS:PAA=3000:5000) is purchased from Sigma-Aldrich Inc and used directly (without any treatment prior to experiment). The PS-b-PAA is dissolved in solvents of N, N-Dimethylformamide and H2O with various proportions. The concentration of solution of PS-b-PAA is 10 mg/mL. The experiments show that the sizes of micelle particles in PS3000-b-PAA5000 solution are grown with water content increasing, and double scattering peaks (qpeak1=0.418 nm-1, qpeak1=0.456 nm-1) appear for the solution with 10% water. A temperature-dependent change of SAXS intensity is demonstrated by in-situ SAXS. The intensities of peak 1 and peak 2 vary in a contrary waywith the sample's warming up, but the positions of the peaks are independent of temperature. The double peaks in SAXS profiles suggest that the size of micelle particles in the solution is not homogeneous but the micelles with two close sizes coexist. It is interesting that the number of two-sized particles changes at the same rate in the heating process although there is a significant difference between the initial number and the final number of micelles.
      通信作者: 杨春明, yangchunming@sinap.ac.cn;wangjie@sinap.ac.cn ; 王劼, yangchunming@sinap.ac.cn;wangjie@sinap.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11405259)和国家重点研发计划(批准号:2017YFA0403000)资助的课题.
      Corresponding author: Yang Chun-Ming, yangchunming@sinap.ac.cn;wangjie@sinap.ac.cn ; Wang Jie, yangchunming@sinap.ac.cn;wangjie@sinap.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11405259) and the National Key RD Program of China (Grant No. 2017YFA0403000).
    [1]

    Kataoka K, Harada A, Nagasaki Y 2001 Adv. Drug Deliv. Rev. 47 113

    [2]

    Gaucher G, Dufresne M H, Sant V P, et al. 2005 J. Control. Release 109 169

    [3]

    Allen C, Maysinger D, Eisenberg A 1999 Colloid. Surface. B 16 3

    [4]

    Bates C M, Maher M J, Janes D W, et al. 2014 Macromolecules 47 2

    [5]

    Park M, Harrison C, Chaikin P M, et al. 1997 Science 276 1401

    [6]

    Peng Q, Tseng Y C, Darling S B, et al. 2010 Adv. Mater. 22 5129

    [7]

    Phillip W A, O'neill B, Rodwogin M, et al. 2010 ACS Appl. Mater. Inter. 2 847

    [8]

    Yang S Y, Park J, Yoon J, et al. 2008 Adv. Fun. Mater. 18 1371

    [9]

    Cameron N S, Corbierre M K, Eisenberg A 1999 Can. J. Chem. 77 1311

    [10]

    Lee A S, Gast A P, Btn V, et al. 1999 Macromolecules 32 4302

    [11]

    Shim W S, Yoo J S, Bae Y H, et al. 2005 Biomacromolecules 6 2930

    [12]

    Zhang L, Yu K, Eisenberg A 1996 Science 272 1777

    [13]

    Alexandridis P, Olsson U, Lindman B 1998 Langmuir 14 2627

    [14]

    Gao Z, Varshney S K, Wong S, et al. 1994 Macromolecules 27 7923

    [15]

    Pang X, Zhao L, Akinc M, et al. 2011 Macromolecules 44 3746

    [16]

    Choucair A, Eisenberg A 2003 Eur. Phys. J. E 10 37

    [17]

    Zhang L, Eisenberg A 1996 J. Am. Chem. Soc. 118 3168

    [18]

    Ivanova R, Lindman B, Alexandridis P 2000 Langmuir 16 9058

    [19]

    Wang F, Bronich T K, Kabanov A V, et al. 2005 Bioconjugate Chem. 16 397

    [20]

    He C, Kim S W, Lee D S 2008 J. Control. Release 127 189

    [21]

    Shen H, Zhang L, Eisenberg A 1997 J. Phys. Chem. B 101 4697

    [22]

    Shen H, Eisenberg A 2000 Macromolecules 33 2561

    [23]

    Yue L, Zhang X H, Wu S K 2004 Acta Poly. Sin. 1 236 (in Chinese)[岳玲, 张晓宏, 吴世康 2004 高分子学报 1 236]

    [24]

    Lu D Y, Wen H, Liu H Z, Xu Z H 2004 Acta Phys. Chim. Sin. 20 38 (in Chinese)[陆冬云, 温浩, 刘会洲, 许志宏 2004 物理化学学报 20 38]

    [25]

    Li Y W, Bian F G, Hong C X, et al. 2015 Atom. Energ. Sci. Technol. 49 1914 (in Chinese)[李怡雯, 边风刚, 洪春霞, 等 2015 原子能科学技术 49 1914]

    [26]

    Fedorova I S, Schmidt P W 1978 J. Appl. Crystallogr. 11 405

  • [1]

    Kataoka K, Harada A, Nagasaki Y 2001 Adv. Drug Deliv. Rev. 47 113

    [2]

    Gaucher G, Dufresne M H, Sant V P, et al. 2005 J. Control. Release 109 169

    [3]

    Allen C, Maysinger D, Eisenberg A 1999 Colloid. Surface. B 16 3

    [4]

    Bates C M, Maher M J, Janes D W, et al. 2014 Macromolecules 47 2

    [5]

    Park M, Harrison C, Chaikin P M, et al. 1997 Science 276 1401

    [6]

    Peng Q, Tseng Y C, Darling S B, et al. 2010 Adv. Mater. 22 5129

    [7]

    Phillip W A, O'neill B, Rodwogin M, et al. 2010 ACS Appl. Mater. Inter. 2 847

    [8]

    Yang S Y, Park J, Yoon J, et al. 2008 Adv. Fun. Mater. 18 1371

    [9]

    Cameron N S, Corbierre M K, Eisenberg A 1999 Can. J. Chem. 77 1311

    [10]

    Lee A S, Gast A P, Btn V, et al. 1999 Macromolecules 32 4302

    [11]

    Shim W S, Yoo J S, Bae Y H, et al. 2005 Biomacromolecules 6 2930

    [12]

    Zhang L, Yu K, Eisenberg A 1996 Science 272 1777

    [13]

    Alexandridis P, Olsson U, Lindman B 1998 Langmuir 14 2627

    [14]

    Gao Z, Varshney S K, Wong S, et al. 1994 Macromolecules 27 7923

    [15]

    Pang X, Zhao L, Akinc M, et al. 2011 Macromolecules 44 3746

    [16]

    Choucair A, Eisenberg A 2003 Eur. Phys. J. E 10 37

    [17]

    Zhang L, Eisenberg A 1996 J. Am. Chem. Soc. 118 3168

    [18]

    Ivanova R, Lindman B, Alexandridis P 2000 Langmuir 16 9058

    [19]

    Wang F, Bronich T K, Kabanov A V, et al. 2005 Bioconjugate Chem. 16 397

    [20]

    He C, Kim S W, Lee D S 2008 J. Control. Release 127 189

    [21]

    Shen H, Zhang L, Eisenberg A 1997 J. Phys. Chem. B 101 4697

    [22]

    Shen H, Eisenberg A 2000 Macromolecules 33 2561

    [23]

    Yue L, Zhang X H, Wu S K 2004 Acta Poly. Sin. 1 236 (in Chinese)[岳玲, 张晓宏, 吴世康 2004 高分子学报 1 236]

    [24]

    Lu D Y, Wen H, Liu H Z, Xu Z H 2004 Acta Phys. Chim. Sin. 20 38 (in Chinese)[陆冬云, 温浩, 刘会洲, 许志宏 2004 物理化学学报 20 38]

    [25]

    Li Y W, Bian F G, Hong C X, et al. 2015 Atom. Energ. Sci. Technol. 49 1914 (in Chinese)[李怡雯, 边风刚, 洪春霞, 等 2015 原子能科学技术 49 1914]

    [26]

    Fedorova I S, Schmidt P W 1978 J. Appl. Crystallogr. 11 405

  • [1] 杨俊亮, 李中亮, 李瑭, 朱晔, 宋丽, 薛莲, 张小威. 多晶体光路配置的X射线衍射特性及在表征同步辐射光束线带宽上的应用. 物理学报, 2020, 69(10): 104101. doi: 10.7498/aps.69.20200165
    [2] 孙星, 默广, 赵林志, 戴兰宏, 吴忠华, 蒋敏强. 小角X射线散射表征非晶合金纳米尺度结构非均匀. 物理学报, 2017, 66(17): 176109. doi: 10.7498/aps.66.176109
    [3] 戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔. 第三代同步辐射光源X射线相干性测量研究. 物理学报, 2014, 63(10): 104202. doi: 10.7498/aps.63.104202
    [4] 刘晓旭, 殷景华, 程伟东, 卜文斌, 范勇, 吴忠华. 利用小角X射线散射技术研究组分对聚酰亚胺/Al2O3杂化薄膜界面特性与分形特征的影响. 物理学报, 2011, 60(5): 056101. doi: 10.7498/aps.60.056101
    [5] 闫芬, 张继超, 李爱国, 杨科, 王华, 毛成文, 梁东旭, 闫帅, 李炯, 余笑寒. 基于同步辐射的快速扫描X射线微束荧光成像方法. 物理学报, 2011, 60(9): 090702. doi: 10.7498/aps.60.090702
    [6] 谢红兰, 胡 雯, 罗红心, 杜国浩, 邓 彪, 陈荣昌, 薛艳玲, 师绍猛, 肖体乔. X射线荧光全息术中消除光源偏振效应和孪生像的重构新算法. 物理学报, 2008, 57(11): 7044-7051. doi: 10.7498/aps.57.7044
    [7] 杜晓明, 吴尔冬, 董宝中, 吴忠华, 苑学众. Ti-Mo合金氢化物微观缺陷的小角X射线散射研究. 物理学报, 2008, 57(9): 5782-5787. doi: 10.7498/aps.57.5782
    [8] 程伟东, 孙民华, 李佳云, 王爱屏, 孙永丽, 刘 芳, 刘雄军. Cu60Zr30Ti10非晶合金弛豫和晶化过程的小角X射线散射研究. 物理学报, 2006, 55(12): 6673-6676. doi: 10.7498/aps.55.6673
    [9] 易荣清, 杨国洪, 崔延莉, 杜华冰, 韦敏习, 董建军, 赵屹东, 崔明启, 郑 雷. 北京同步辐射3B3中能束线X射线探测系统性能研究. 物理学报, 2006, 55(12): 6287-6292. doi: 10.7498/aps.55.6287
    [10] 徐 耀, 吴 东, 孙予罕, 李志宏, 董宝中, 吴中华. 小角x射线散射法研究氧化硅溶胶的制备环境依赖性. 物理学报, 2005, 54(6): 2814-2820. doi: 10.7498/aps.54.2814
    [11] 郑立静, 李树索, 李焕喜, 陈昌麒, 韩雅芳, 董宝中. 7050铝合金等通道转角挤压过程中显微结构和力学性能演化的小角x射线散射研究. 物理学报, 2005, 54(4): 1665-1670. doi: 10.7498/aps.54.1665
    [12] 夏庆中, 陈 波, 曾贵玉, 罗顺火, 董海山, 荣利霞, 董宝中. 三氨基三硝基苯材料微孔结构的小角x射线散射实验研究. 物理学报, 2005, 54(7): 3273-3277. doi: 10.7498/aps.54.3273
    [13] 黄万霞, 袁清习, 田玉莲, 朱佩平, 姜晓明, 王寯越. 同步辐射硬x射线衍射增强成像新进展. 物理学报, 2005, 54(2): 677-681. doi: 10.7498/aps.54.677
    [14] 赵辉, 杜志伟, 周铁涛, 刘培英, 董宝中, 陈昌麒. Al-Zn-Mg-Cu-Li合金时效过程微结构演化的小角x射线散射研究. 物理学报, 2004, 53(4): 1251-1254. doi: 10.7498/aps.53.1251
    [15] 赵辉, 郭梅芳, 董宝中. 小角x射线散射结晶聚合物过渡层厚度的测定. 物理学报, 2004, 53(4): 1247-1250. doi: 10.7498/aps.53.1247
    [16] 徐 耀, 李志宏, 范文浩, 吴 东, 孙予罕, 王 俊, 董宝中. 小角x射线散射方法研究甲基改性氧化硅干凝胶的孔结构. 物理学报, 2003, 52(3): 635-640. doi: 10.7498/aps.52.635
    [17] 荣利霞, 解立平, 董宝中, 林伟刚, 王 俊. 同步辐射小角x射线散射方法研究由城市固体垃圾制备的活性炭. 物理学报, 2003, 52(3): 630-634. doi: 10.7498/aps.52.630
    [18] 郭红霞, 陈雨生, 张义门, 韩福斌, 贺朝会, 周辉. 浮栅ROM器件x射线剂量增强效应实验研究. 物理学报, 2002, 51(10): 2315-2319. doi: 10.7498/aps.51.2315
    [19] 赵辉, 董宝中, 郭梅芳, 王良诗, 乔金梁. 小角x射线散射结晶聚合物结构的研究. 物理学报, 2002, 51(12): 2887-2891. doi: 10.7498/aps.51.2887
    [20] 荣利霞, 魏柳荷, 董宝中, 王俊, 李福绵, 李子臣. 两亲性嵌段聚合物的同步辐射小角x射线散射研究. 物理学报, 2002, 51(8): 1773-1777. doi: 10.7498/aps.51.1773
计量
  • 文章访问数:  7108
  • PDF下载量:  197
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-03
  • 修回日期:  2017-11-17
  • 刊出日期:  2019-02-20

/

返回文章
返回