搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于室内可见光通信技术的新型两级光学接收天线设计与分析

彭星 孔令豹

引用本文:
Citation:

基于室内可见光通信技术的新型两级光学接收天线设计与分析

彭星, 孔令豹

Design and analysis of novel two-stage optical receiving antenna for indoor visible light communication technology

Peng Xing, Kong Ling-Bao
PDF
导出引用
  • 针对室内可见光通信系统的应用需求,设计了一种新型两级光学接收天线.根据复合抛物面聚光器光学增益随视场增大而减小的聚光特性,将复合抛物面聚光器截面基准曲线旋转设计得到具有一定旋转角与厚度的透镜壁复合抛物面聚光器.进一步结合透镜壁复合抛物面聚光器和半球透镜的优势设计了一种新型两级光学接收天线,在增益保持的情况下视场角增大了近20.在一个5 m5 m3 m的空旷房间,通过TracePro建立光学天线的分析模型,Matlab软件对室内可见光通信系统进行信道建模.计算结果表明,采用这种新型两级光学接收天线,与直接接收的情况相比,平均接收功率增幅为757.2%,是复合抛物面聚光器的5.62倍;信噪比平均值增幅为28.07%,是复合抛物面聚光器的1.67倍;光学增益为11.49,是复合抛物面聚光器的2.81倍.且光斑半径仅为2.5 mm,较复合抛物面聚光器减小了近37.5%,使得能量集中均匀分布,进一步证实该新型两级光学接收天线适用于室内可见光通信系统.
    White light emitting diode has become the next generation of light source because of its high illuminance efficiency, low power consumption, and long life, and it has also been adopted in the application of indoor visible light communication (VLC) system. The VLC has great development potentials, however, there is a lack of research on optical receiving antenna which is a key component of VLC. Therefore, in this paper we design a novel two-stage optical receiving antenna for indoor VLC system. In the designed antenna, the lens wall of a compound parabolic concentrator with a certain rotation angle and thickness is obtained through rotating the parabolic reflector cross-section reference curve. Furthermore, a novel two-stage optical receiving antenna is designed by taking advantage of lens-wall compound parabolic concentrators and hemispherical lenses. This significantly increases the view angle by nearly 20 in the case of gain retention. The analytical model of the optical antenna in a 5 m5 m3 m open room is established by using a software of TraceProTM. The indoor VLC system is also modelled and implemented by using a software of MatlabTM. The results show that the growth rate of average received power is 757.2%, which is 5.62 times that of the compound parabolic concentrator, and the signal-noise-ratio is increased by 28.07%, on average, which is 1.67 times that of the compound parabolic concentrator. The optical gain of the two-stage optical receiving antenna is 11.49, which is 2.81 times that of the compound parabolic concentrator. The spot radius is only 2.5 mm, which is reduced by nearly 37.5% compared with the spot radius of the compound parabolic concentrator, and the energy concentration is evenly distributed at the same time. This further confirms that the designed two-stage optical receiving antenna is suitable for indoor VLC system. Finally, the performance analysis and experimental verification of the new two-stage optical receiver antenna are also given.
      通信作者: 孔令豹, lkong@fudan.edu.cn
    • 基金项目: 上海科委创新行动计划基础研究项目(批准号:17JC1400601)资助的课题.
      Corresponding author: Kong Ling-Bao, lkong@fudan.edu.cn
    • Funds: Project supported by the Shanghai Science and Technology Committee Innovation Grand, China (Grant No. 17JC1400601).
    [1]

    Dupuis R D, Krames M R 2008 J. Lightwave Technol. 26 1154

    [2]

    Kwonhyung L, Hyuncheol P, Barry J R 2011 IEEE Commun. Lett. 15 217

    [3]

    Hoa Le M, Dominic O, Grahame F, Lubin Z, Kyungwoo L, Daekwang J, YunJe O 2008 IEEE Photon. Technol. Lett. 20 1243

    [4]

    Tanaka Y, Haruyama S, Nakagawa M 2000 Proceedings of the 11th IEEE International Symposium on PIMRC London, England, September 18-21, 2000 p1325

    [5]

    Kahn J M, Barry J R 1997 Proc. IEEE 85 265

    [6]

    Vucic J, Kottke C, Nerreter S, Langer K D, Walewski J W 2010 J. Lightwave Technol. 28 3512

    [7]

    Jae H C, Sung W K, Jin Y K 2009 The 9th International Symposium Communications and Information Technology London, England, September 28-30, 2009 p1247

    [8]

    Wang Y, Lan T, Ni G Q 2017 Acta Phys. Sin. 66 084207 (in Chinese) [王云, 蓝天, 倪国强 2017 物理学报 66 084207]

    [9]

    Afgani M Z, Haas H, Elgala H, Knipp D 2006 IEEE 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities Barcelona Spain, March 1-3, 2006 p134

    [10]

    Cui L, Tang Y, Zhu Q W, Luo J B, Hu S S 2016 Acta Phys. Sin. 65 094208 (in Chinese) [崔璐, 唐义, 朱庆炜, 骆加彬, 胡珊珊 2016 物理学报 65 094208]

    [11]

    Hashemi S, Ghassemlooy Z, Chao L, Benhaddou D 2008 IEEE 6th International Symposium on Communication Systems, Networks and Digital Signal Processing (CNSDSP) Graz, July 25, 2008 p174

    [12]

    Liu H J, Lan T, Ni G Q 2014 Acta Phys. Sin. 63 238503 (in Chinese) [刘浩杰, 蓝天, 倪国强 2014 物理学报 63 238503]

    [13]

    Li X, Lan T, Wang Y, Wang L H 2015 Acta Phys. Sin. 64 024201 (in Chinese) [李湘, 蓝天, 王云, 王龙辉 2015 物理学报 64 024201]

    [14]

    Yun W, Tian L, Ni G Q 2016 Appl. Opt. 55 10229

    [15]

    Fang J Y, Zhang H L, Jia H H, Shao Z Z, Chang S L, Yang J C 2008 Appl. Opt. 29 98 (in Chinese) [方靖岳, 张海良, 贾红辉, 邵铮铮, 常胜利, 杨俊才 2008 应用光学 29 98]

    [16]

    Wang Y, Lan T, Li X, Shen Z M, Ni G Q 2015 Acta Phys. Sin. 64 124212 (in Chinese) [王云, 蓝天, 李湘, 沈振民, 倪国强 2015 物理学报 64 124212]

    [17]

    Liu L Z, Li J H 2006 Power Energy 27 52 (in Chinese) [刘灵芝,李戬洪 2006 能源技术 27 52]

    [18]

    Cao J 2012 M. S. Dissertation (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese) [曹捷 2012 硕士学位论文 (南京: 南京邮电大学)]

    [19]

    Komine T, Nakagawa M 2004 IEEE Trans. Consum. Electron. 50 100

    [20]

    Shen Z M 2014 M. S. Dissertation (Beijing: Beijing Institute of Technology) (in Chinese) [沈振民 2014 硕士学位论文 (北京: 北京理工大学)]

    [21]

    Toshihiko K, Masao N 2004 IEEE Trans. Consum. Electron. 50 100

    [22]

    Shen Z M, Lan T, Wang Y, Wang L H, Ni G Q 2015 Infrared Laser Eng. 44 2496 (in Chinese) [沈振民, 蓝天, 王云, 王龙辉, 倪国强 2015 红外与激光工程 44 2496]

    [23]

    Liang W, Li X B, Chong W C, Liu Z J, Che F Y, Hussain B, La K M 2015 2015 Symposium on VLSI Circuits Digest of Technical Papers Kyoto, Japan, June 17-19, 2015 C328

    [24]

    Ding J P 2013 Ph. D. Dissertation (Beijing: Beijing University of Posts and Telecommunications) (in Chinese) [丁举鹏 2013 博士学位论文 (北京: 北京邮电大学)]

    [25]

    Yu B Y 2015 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [余冰雁 2015 博士学位论文 (北京: 清华大学)]

    [26]

    Gao M G, Lan T, Zhao T, Zhang Y L, Cui Z H, Ni G Q 2015 2015 International Conference on Optical Instruments and Technology: Optoelectronic Devices and Optical Signal Processing Beijing, China, May 17-19, 2015 p961901

    [27]

    Zhang T 2016 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese) [张天 2016 博士学位论文 (长春: 吉林大学)]

    [28]

    Yang C Y, Yang J, Yang Z W, Hou J, Chen S P 2016 J. Optoelectron. Lasers 27 491 (in Chinese) [杨春勇, 杨杰, 杨振威, 候金, 陈少平 2016 光电子激光 27 491]

    [29]

    Chen Q F 2014 M. S. Dissertation (Zhengzhou: Information Engineering University) (in Chinese) [陈庆峰 2014 硕士学位论文 (郑州: 解放军信息工程大学)]

  • [1]

    Dupuis R D, Krames M R 2008 J. Lightwave Technol. 26 1154

    [2]

    Kwonhyung L, Hyuncheol P, Barry J R 2011 IEEE Commun. Lett. 15 217

    [3]

    Hoa Le M, Dominic O, Grahame F, Lubin Z, Kyungwoo L, Daekwang J, YunJe O 2008 IEEE Photon. Technol. Lett. 20 1243

    [4]

    Tanaka Y, Haruyama S, Nakagawa M 2000 Proceedings of the 11th IEEE International Symposium on PIMRC London, England, September 18-21, 2000 p1325

    [5]

    Kahn J M, Barry J R 1997 Proc. IEEE 85 265

    [6]

    Vucic J, Kottke C, Nerreter S, Langer K D, Walewski J W 2010 J. Lightwave Technol. 28 3512

    [7]

    Jae H C, Sung W K, Jin Y K 2009 The 9th International Symposium Communications and Information Technology London, England, September 28-30, 2009 p1247

    [8]

    Wang Y, Lan T, Ni G Q 2017 Acta Phys. Sin. 66 084207 (in Chinese) [王云, 蓝天, 倪国强 2017 物理学报 66 084207]

    [9]

    Afgani M Z, Haas H, Elgala H, Knipp D 2006 IEEE 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities Barcelona Spain, March 1-3, 2006 p134

    [10]

    Cui L, Tang Y, Zhu Q W, Luo J B, Hu S S 2016 Acta Phys. Sin. 65 094208 (in Chinese) [崔璐, 唐义, 朱庆炜, 骆加彬, 胡珊珊 2016 物理学报 65 094208]

    [11]

    Hashemi S, Ghassemlooy Z, Chao L, Benhaddou D 2008 IEEE 6th International Symposium on Communication Systems, Networks and Digital Signal Processing (CNSDSP) Graz, July 25, 2008 p174

    [12]

    Liu H J, Lan T, Ni G Q 2014 Acta Phys. Sin. 63 238503 (in Chinese) [刘浩杰, 蓝天, 倪国强 2014 物理学报 63 238503]

    [13]

    Li X, Lan T, Wang Y, Wang L H 2015 Acta Phys. Sin. 64 024201 (in Chinese) [李湘, 蓝天, 王云, 王龙辉 2015 物理学报 64 024201]

    [14]

    Yun W, Tian L, Ni G Q 2016 Appl. Opt. 55 10229

    [15]

    Fang J Y, Zhang H L, Jia H H, Shao Z Z, Chang S L, Yang J C 2008 Appl. Opt. 29 98 (in Chinese) [方靖岳, 张海良, 贾红辉, 邵铮铮, 常胜利, 杨俊才 2008 应用光学 29 98]

    [16]

    Wang Y, Lan T, Li X, Shen Z M, Ni G Q 2015 Acta Phys. Sin. 64 124212 (in Chinese) [王云, 蓝天, 李湘, 沈振民, 倪国强 2015 物理学报 64 124212]

    [17]

    Liu L Z, Li J H 2006 Power Energy 27 52 (in Chinese) [刘灵芝,李戬洪 2006 能源技术 27 52]

    [18]

    Cao J 2012 M. S. Dissertation (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese) [曹捷 2012 硕士学位论文 (南京: 南京邮电大学)]

    [19]

    Komine T, Nakagawa M 2004 IEEE Trans. Consum. Electron. 50 100

    [20]

    Shen Z M 2014 M. S. Dissertation (Beijing: Beijing Institute of Technology) (in Chinese) [沈振民 2014 硕士学位论文 (北京: 北京理工大学)]

    [21]

    Toshihiko K, Masao N 2004 IEEE Trans. Consum. Electron. 50 100

    [22]

    Shen Z M, Lan T, Wang Y, Wang L H, Ni G Q 2015 Infrared Laser Eng. 44 2496 (in Chinese) [沈振民, 蓝天, 王云, 王龙辉, 倪国强 2015 红外与激光工程 44 2496]

    [23]

    Liang W, Li X B, Chong W C, Liu Z J, Che F Y, Hussain B, La K M 2015 2015 Symposium on VLSI Circuits Digest of Technical Papers Kyoto, Japan, June 17-19, 2015 C328

    [24]

    Ding J P 2013 Ph. D. Dissertation (Beijing: Beijing University of Posts and Telecommunications) (in Chinese) [丁举鹏 2013 博士学位论文 (北京: 北京邮电大学)]

    [25]

    Yu B Y 2015 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [余冰雁 2015 博士学位论文 (北京: 清华大学)]

    [26]

    Gao M G, Lan T, Zhao T, Zhang Y L, Cui Z H, Ni G Q 2015 2015 International Conference on Optical Instruments and Technology: Optoelectronic Devices and Optical Signal Processing Beijing, China, May 17-19, 2015 p961901

    [27]

    Zhang T 2016 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese) [张天 2016 博士学位论文 (长春: 吉林大学)]

    [28]

    Yang C Y, Yang J, Yang Z W, Hou J, Chen S P 2016 J. Optoelectron. Lasers 27 491 (in Chinese) [杨春勇, 杨杰, 杨振威, 候金, 陈少平 2016 光电子激光 27 491]

    [29]

    Chen Q F 2014 M. S. Dissertation (Zhengzhou: Information Engineering University) (in Chinese) [陈庆峰 2014 硕士学位论文 (郑州: 解放军信息工程大学)]

  • [1] 许锦, 郭洋宁, 罗宁宁, 李淑静, 史久林, 何兴道. 水体参数对受激布里渊散射阈值及增益的影响. 物理学报, 2021, 70(15): 154205. doi: 10.7498/aps.70.20210326
    [2] 王云, 蓝天, 倪国强. 室内可见光通信复合光学接收端设计与分析. 物理学报, 2017, 66(8): 084207. doi: 10.7498/aps.66.084207
    [3] 崔璐, 唐义, 朱庆炜, 骆加彬, 胡珊珊. 多光谱可见光通信信道串扰分析. 物理学报, 2016, 65(9): 094208. doi: 10.7498/aps.65.094208
    [4] 李湘, 蓝天, 王云, 王龙辉. 室内可见光通信系统中菲涅尔透镜接收天线的设计研究. 物理学报, 2015, 64(2): 024201. doi: 10.7498/aps.64.024201
    [5] 张逸伦, 蓝天, 高明光, 赵涛, 沈振民. 二级级联式室内可见光通信光学接收天线设计. 物理学报, 2015, 64(16): 164201. doi: 10.7498/aps.64.164201
    [6] 王云, 蓝天, 李湘, 沈振民, 倪国强. 复合抛物面聚光器作为可见光通信光学天线的设计研究与性能分析. 物理学报, 2015, 64(12): 124212. doi: 10.7498/aps.64.124212
    [7] 沈云, 傅继武, 于国萍. 增益对一维周期结构慢光传输特性影响. 物理学报, 2014, 63(17): 174202. doi: 10.7498/aps.63.174202
    [8] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究. 物理学报, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [9] 范胜男, 王波, 祁辉荣, 刘梅, 张余炼, 张建, 刘荣光, 伊福廷, 欧阳群, 陈元柏. 高增益型气体电子倍增微网结构探测器的性能研究. 物理学报, 2013, 62(12): 122901. doi: 10.7498/aps.62.122901
    [10] 李晓莉, 尚雅轩, 孙江. 射频驱动下电磁诱导透明窗口的分裂和增益的出现. 物理学报, 2013, 62(6): 064202. doi: 10.7498/aps.62.064202
    [11] 赵建森, 张芝涛, 王健, 俞哲. 一种基于5—20 kHz交流激励的U形等离子体天线. 物理学报, 2012, 61(19): 195201. doi: 10.7498/aps.61.195201
    [12] 郑奎松, 吴昌英, 万国宾, 韦高. 复合左右手技术的二元阵天线的计算及测量. 物理学报, 2011, 60(5): 054104. doi: 10.7498/aps.60.054104
    [13] 保石, 罗春荣, 赵晓鹏. S波段超材料完全吸收基板微带天线. 物理学报, 2011, 60(1): 014101. doi: 10.7498/aps.60.014101
    [14] 穆廷魁, 张淳民, 任文艺, 张霖, 祝宝辉. 偏振干涉成像光谱仪的视场展宽设计与分析. 物理学报, 2011, 60(7): 070704. doi: 10.7498/aps.60.070704
    [15] 邵公望, 戴亚军, 金国良. 抽运光与信号光的光强重叠因子和掺铒玻璃波导放大器的增益特性. 物理学报, 2009, 58(4): 2488-2494. doi: 10.7498/aps.58.2488
    [16] 冉英华, 杨华军, 徐权, 谢康, 黄金. 卡塞格伦光学天线偏轴及性能分析. 物理学报, 2009, 58(2): 946-951. doi: 10.7498/aps.58.946
    [17] 朱忠奎, 罗春荣, 赵晓鹏. 一种新型的树枝状负磁导率材料微带天线. 物理学报, 2009, 58(9): 6152-6157. doi: 10.7498/aps.58.6152
    [18] 张小东, 杨贺润, 段利敏, 徐瑚珊, 胡碧涛, 李春艳, 李祖玉. Micromegas探测器计数曲线、增益以及能量分辨特性的研究. 物理学报, 2008, 57(4): 2141-2144. doi: 10.7498/aps.57.2141
    [19] 姜永亮, 赵保真, 梁晓燕, 冷雨欣, 李儒新, 徐至展, 胡小鹏, 祝世宁. 基于周期极化LiTaO3晶体的高增益简并啁啾脉冲参量放大. 物理学报, 2007, 56(5): 2709-2713. doi: 10.7498/aps.56.2709
    [20] 赵国伟, 徐跃民, 陈 诚. 等离子体天线色散关系和辐射场数值计算. 物理学报, 2007, 56(9): 5298-5303. doi: 10.7498/aps.56.5298
计量
  • 文章访问数:  7670
  • PDF下载量:  316
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-30
  • 修回日期:  2017-12-04
  • 刊出日期:  2018-05-05

/

返回文章
返回