搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过渡金属元素X(X=Mn,Fe,Co,Ni)掺杂对ZnO基阻变存储器性能的影响

郭家俊 董静雨 康鑫 陈伟 赵旭

引用本文:
Citation:

过渡金属元素X(X=Mn,Fe,Co,Ni)掺杂对ZnO基阻变存储器性能的影响

郭家俊, 董静雨, 康鑫, 陈伟, 赵旭

Effect of transition metal element X (X=Mn, Fe, Co, and Ni) doping on performance of ZnO resistive memory

Guo Jia-Jun, Dong Jing-Yu, Kang Xin, Chen Wei, Zhao Xu
PDF
导出引用
  • 实验表明掺杂是一种改善阻变存储器性能的有效手段,但其物理机理鲜有研究.本文采用第一性原理方法系统研究了过渡金属元素X(X=Mn,Fe,Co,Ni)掺杂对ZnO基阻变存储器中氧空位迁移势垒和形成能的影响.计算结果表明Ni掺杂可同时有效降低+1和+2价氧空位在掺杂原子附近的迁移势垒,X掺杂均减小了氧空位的形成能,特别是掺杂Ni时氧空位的形成能减小最为显著(比未掺杂时减少了64%).基于该结果制备了未掺杂和Ni掺杂ZnO阻变存储器,研究表明通过掺杂控制体系中氧空位的迁移势垒和形成能,可以有效改善器件的初始化过程、操作电压、保持性等阻变性能.研究结果有助于理解探究影响阻变的微观机制,并可为掺杂提高阻变存储器性能提供一定的理论指导.
    Resistance random access memory (RRAM) based on resistive switching in metal oxides has attracted considerable attention as a promising candidate for next-generation nonvolatile memory due to its high operating speed, superior scalability, and low power consumption. However, some operating parameters of RRAM cannot meet the practical requirement, which impedes its commercialization. A lot of experimental results show that doping is an effective method of improving the performance of RRAM, while the study on the physical mechanism of doping is rare. It is generally believed that the formation and rupture of conducting filaments, caused by the migration of oxygen vacancies under electric field play a major role in resistive switching of metal oxide materials. In this work, the first principle calculation based on density functional theory is performed to study the effects of transition metal element X (X=Mn, Fe, Co, and Ni) doping on the migration barriers and formation energy of oxygen vacancy in ZnO. The calculation results show that the migration barriers of both the monovalent and divalent oxygen vacancy are reduced significantly by Ni doping. This result indicates that the movement of oxygen vacancies in Ni doped ZnO is easier than in undoped ZnO RRAM device, thus Ni doping is beneficial to the formation and rupture of oxygen vacancy conducting filaments. Furthermore, the calculation results show that the formation energy of the oxygen vacancy in ZnO system can be reduced by X doping, especially by Ni doping. The formation energy of the oxygen vacancy decreases from 0.854 for undoped ZnO to 0.307 eV for Ni doped ZnO. Based on the above calculated results, Ni doped and undoped ZnO RRAM device are prepared by using pulsed laser deposition method under an oxygen pressure of 2 Pa. The Ni doped ZnO RRAM device shows the optimized forming process, low operating voltage (0.24 V and 0.34 V for Set and Reset voltage), and long retention time (>104 s). Set and Reset voltage in Ni doped ZnO device decrease by 80% and 38% respectively compared with those in undoped ZnO device. It is known that the density of oxygen vacancies in the device is dependent on the oxygen pressure during preparation. The Ni doped ZnO RRAM device under a higher oxygen pressure (5 Pa) is also prepared. The Ni doped ZnO RRAM device prepared under 5 Pa oxygen pressure shows a little higher Set and Reset voltage than the device prepared under 2 Pa oxygen pressure, while the operating voltages are still lower than those of undoped ZnO RRAM. Thus, the doping effect in the ZnO system is affected by the density of oxygen vacancies in the device. Our work provides a guidance for optimizing the performance of the metal oxide based RRAM device through element doping.
      通信作者: 陈伟, chen07308@hebtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11574071)资助的课题.
      Corresponding author: Chen Wei, chen07308@hebtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11574071).
    [1]

    Yang J J, Strukov D B, Stewart D R 2013 Nat. Nanotechnol. 8 13

    [2]

    Liu D Q, Cheng H F, Zhu X, Wang N N, Zhang C Y 2014 Acta Phys. Sin. 63 187301 (in Chinese) [刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳 2014 物理学报 63 187301]

    [3]

    Cao M G, Chen Y S, Sun J R, Shang D S, Liu L F, Kang J F, Shen B G 2012 Appl. Phys. Lett. 101 203502

    [4]

    Xiong Y Q, Zhou W P, Li Q, He M C, Du J, Cao Q Q, Wang D H, Du Y W 2014 Appl. Phys. Lett. 105 032410

    [5]

    Pan F, Gao S, Chen C, Song C, Zeng F 2014 Mater. Sci. Eng. R-Rep. 83 1

    [6]

    Yang C S, Shang D S, Liu N, Shi G, Shen X, Yu R C, Li Y Q, Sun Y 2017 Adv. Mater. 29 1700906

    [7]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632

    [8]

    Zhang H, Liu L, Gao B, Qiu Y, Liu X, Lu J, Han R, Kang J, Yu B 2011 Appl. Phys. Lett. 98 042105

    [9]

    Liu Q, Long S B, Wang W, Zuo Q Y, Zhang S, Chen J N, Liu M 2009 IEEE Electron Device Lett. 30 1335

    [10]

    Jung K, Choi J, Kim Y, Im H, Seo S, Jung R, Kim D, Kim J S, Park B H, Hong J P 2008 J. Appl. Phys. 103 034504

    [11]

    Chen G, Song C, Chen C, Gao S, Zeng F, Pan F 2012 Adv. Mater. 24 3515

    [12]

    Chen G, Peng J J, Song C, Zeng F, Pan F 2013 J. Appl. Phys. 113 104503

    [13]

    Ren S X, Sun G W, Zhao J, Dong J Y, Wei Y, Ma Z C, Zhao X, Chen W 2014 Appl. Phys. Lett. 104 232406

    [14]

    Ren S, Dong J, Chen W, Zhang L, Guo J, Zhang L, Zhao J, Zhao X 2015 J. Appl. Phys. 118 233902

    [15]

    Ren S, Chen W, Guo J, Yang H, Zhao X 2017 J. Alloys Compd. 708 484

    [16]

    Segall M D, Philip J D L, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.:Condens. Matter 14 2717

    [17]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [18]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [19]

    Zhao Q, Zhou M, Zhang W, Liu Q, Li X, Liu M, Dai Y 2013 J. Semicond. 34 032001

    [20]

    Janotti A, van de Walle C G 2007 Phys. Rev. B 76 165202

    [21]

    Ermoshin V A, Veryazov V A 1995 Phys. Status Solidi B 189 K49

    [22]

    Zhao J, Dong J Y, Zhao X, Chen W 2014 Chin. Phys. Lett. 31 057307

    [23]

    Wong H S P, Lee H Y, Yu S, Chen Y S, Wu Y, Chen P S, Lee B, Chen F T, Tsai M J 2012 Proc. IEEE 100 1951

    [24]

    Kamiya K, Yang M Y, Nagata T, Park S G, Magyari Köpe B, Chikyow T, Yamada K, Niwa M, Nishi Y, Shiraishi K 2013 Phys. Rev. B 87 155201

    [25]

    van de Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851

  • [1]

    Yang J J, Strukov D B, Stewart D R 2013 Nat. Nanotechnol. 8 13

    [2]

    Liu D Q, Cheng H F, Zhu X, Wang N N, Zhang C Y 2014 Acta Phys. Sin. 63 187301 (in Chinese) [刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳 2014 物理学报 63 187301]

    [3]

    Cao M G, Chen Y S, Sun J R, Shang D S, Liu L F, Kang J F, Shen B G 2012 Appl. Phys. Lett. 101 203502

    [4]

    Xiong Y Q, Zhou W P, Li Q, He M C, Du J, Cao Q Q, Wang D H, Du Y W 2014 Appl. Phys. Lett. 105 032410

    [5]

    Pan F, Gao S, Chen C, Song C, Zeng F 2014 Mater. Sci. Eng. R-Rep. 83 1

    [6]

    Yang C S, Shang D S, Liu N, Shi G, Shen X, Yu R C, Li Y Q, Sun Y 2017 Adv. Mater. 29 1700906

    [7]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632

    [8]

    Zhang H, Liu L, Gao B, Qiu Y, Liu X, Lu J, Han R, Kang J, Yu B 2011 Appl. Phys. Lett. 98 042105

    [9]

    Liu Q, Long S B, Wang W, Zuo Q Y, Zhang S, Chen J N, Liu M 2009 IEEE Electron Device Lett. 30 1335

    [10]

    Jung K, Choi J, Kim Y, Im H, Seo S, Jung R, Kim D, Kim J S, Park B H, Hong J P 2008 J. Appl. Phys. 103 034504

    [11]

    Chen G, Song C, Chen C, Gao S, Zeng F, Pan F 2012 Adv. Mater. 24 3515

    [12]

    Chen G, Peng J J, Song C, Zeng F, Pan F 2013 J. Appl. Phys. 113 104503

    [13]

    Ren S X, Sun G W, Zhao J, Dong J Y, Wei Y, Ma Z C, Zhao X, Chen W 2014 Appl. Phys. Lett. 104 232406

    [14]

    Ren S, Dong J, Chen W, Zhang L, Guo J, Zhang L, Zhao J, Zhao X 2015 J. Appl. Phys. 118 233902

    [15]

    Ren S, Chen W, Guo J, Yang H, Zhao X 2017 J. Alloys Compd. 708 484

    [16]

    Segall M D, Philip J D L, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.:Condens. Matter 14 2717

    [17]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [18]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [19]

    Zhao Q, Zhou M, Zhang W, Liu Q, Li X, Liu M, Dai Y 2013 J. Semicond. 34 032001

    [20]

    Janotti A, van de Walle C G 2007 Phys. Rev. B 76 165202

    [21]

    Ermoshin V A, Veryazov V A 1995 Phys. Status Solidi B 189 K49

    [22]

    Zhao J, Dong J Y, Zhao X, Chen W 2014 Chin. Phys. Lett. 31 057307

    [23]

    Wong H S P, Lee H Y, Yu S, Chen Y S, Wu Y, Chen P S, Lee B, Chen F T, Tsai M J 2012 Proc. IEEE 100 1951

    [24]

    Kamiya K, Yang M Y, Nagata T, Park S G, Magyari Köpe B, Chikyow T, Yamada K, Niwa M, Nishi Y, Shiraishi K 2013 Phys. Rev. B 87 155201

    [25]

    van de Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851

  • [1] 高旭东, 杨得草, 魏雯静, 李公平. 电子束对ZnO和TiO2辐照损伤的模拟计算. 物理学报, 2021, 70(23): 234101. doi: 10.7498/aps.70.20211223
    [2] 张丽丽, 夏桐, 刘桂安, 雷博程, 赵旭才, 王少霞, 黄以能. 第一性原理方法研究N-Pr共掺杂ZnO的电子结构和光学性质. 物理学报, 2019, 68(1): 017401. doi: 10.7498/aps.68.20181531
    [3] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [4] 侯清玉, 李勇, 赵春旺. Al掺杂和空位对ZnO磁性影响的第一性原理研究. 物理学报, 2017, 66(6): 067202. doi: 10.7498/aps.66.067202
    [5] 代月花, 潘志勇, 陈真, 王菲菲, 李宁, 金波, 李晓风. 基于HfO2的阻变存储器中Ag导电细丝方向和浓度的第一性原理研究. 物理学报, 2016, 65(7): 073101. doi: 10.7498/aps.65.073101
    [6] 朱慧群, 李毅, 叶伟杰, 李春波. 花状掺杂W-VO2/ZnO热致变色纳米复合薄膜研究. 物理学报, 2014, 63(23): 238101. doi: 10.7498/aps.63.238101
    [7] 唐欣月, 高红, 潘思明, 孙鉴波, 姚秀伟, 张喜田. 单根In掺杂ZnO纳米带场效应管的电学性质. 物理学报, 2014, 63(19): 197302. doi: 10.7498/aps.63.197302
    [8] 刘玮洁, 孙正昊, 黄宇欣, 冷静, 崔海宁. 不同价态稀土元素Yb掺杂ZnO的电子结构和光学性质. 物理学报, 2013, 62(12): 127101. doi: 10.7498/aps.62.127101
    [9] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 第一性原理研究稀土掺杂ZnO结构的光电性质. 物理学报, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [10] 鲍善永, 董武军, 徐兴, 栾田宝, 李杰, 张庆瑜. 氧分压对Mg掺杂ZnO薄膜结晶质量和光学特性的影响. 物理学报, 2011, 60(3): 036804. doi: 10.7498/aps.60.036804
    [11] 张富春, 张威虎, 董军堂, 张志勇. Cr掺杂ZnO纳米线的电子结构和磁性. 物理学报, 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [12] 袁娣, 黄多辉, 罗华峰, 王藩侯. Li, N双受主共掺杂实现p型ZnO的第一性原理研究. 物理学报, 2010, 59(9): 6457-6465. doi: 10.7498/aps.59.6457
    [13] 严国清, 谢凯旋, 莫仲荣, 路忠林, 邹文琴, 王申, 岳凤娟, 吴镝, 张凤鸣, 都有为. 共沉淀法制备Co掺杂ZnO的室温铁磁性的研究. 物理学报, 2009, 58(2): 1237-1241. doi: 10.7498/aps.58.1237
    [14] 关丽, 李强, 赵庆勋, 郭建新, 周阳, 金利涛, 耿波, 刘保亭. Al和Ni共掺ZnO光学性质的第一性原理研究. 物理学报, 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
    [15] 羊新胜, 赵 勇. 铁磁性锰氧化物掺杂的ZnO压敏电阻性能研究. 物理学报, 2008, 57(5): 3188-3192. doi: 10.7498/aps.57.3188
    [16] 段满益, 徐 明, 周海平, 陈青云, 胡志刚, 董成军. 碳掺杂ZnO的电子结构和光学性质. 物理学报, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [17] 于 宙, 李 祥, 龙 雪, 程兴旺, 王晶云, 刘 颖, 曹茂盛, 王富耻. Mn掺杂ZnO稀磁半导体材料的制备和磁性研究. 物理学报, 2008, 57(7): 4539-4544. doi: 10.7498/aps.57.4539
    [18] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [19] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [20] 刘学超, 施尔畏, 宋力昕, 张华伟, 陈之战. 固相反应法制备Co掺杂ZnO的磁性和光学性能研究. 物理学报, 2006, 55(5): 2557-2561. doi: 10.7498/aps.55.2557
计量
  • 文章访问数:  8640
  • PDF下载量:  319
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-16
  • 修回日期:  2017-12-22
  • 刊出日期:  2019-03-20

/

返回文章
返回