搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁诱导透明暗孤子的耗散变分束缚分析

谭康伯 路宏敏 官乔 张光硕 陈冲冲

引用本文:
Citation:

电磁诱导透明暗孤子的耗散变分束缚分析

谭康伯, 路宏敏, 官乔, 张光硕, 陈冲冲

Dissipative variational analysis for bounded dark solitons of electromagnetically induced transparency

Tan Kang-Bo, Lu Hong-Min, Guan Qiao, Zhang Guang-Shuo, Chen Chong-Chong
PDF
导出引用
  • 基于电磁精确控制的考虑,对半导体固态系统中电磁诱导透明所形成的暗孤子态进行了动力学研究.在此涉及多物理场的复杂系统中,通过变分技术对耗散与非线性相干作用下相应的同态暗孤子动力学特征进行分析.结果表明,耗散削弱作用与相干耦合作用之间所形成的系统性平衡约束对暗孤子时空演化的精密控制具有重要意义.
    Electromagnetically-controlled precision is one of novel topics in the electromagnetics. To realize the precision controlling of the electromagnetically complicated phenomenon, the systematic characteristics of medium environment needs considering. Based on the cancellation of interference caused by quantum coherence in the systematic environment of material, the electromagnetically-induced transparency (EIT) can be achieved. For this nonlinear phenomenon, due to the advancement of quantum spot and well, the controlling of the bounded sate of quantum in various dimensions of semiconductor can be operated. So the solid system presents a clear superiority of controlling EIT. High power electromagnetic field excites the dynamic characteristics in solid material, which is the result of systematic reaction between field and material. Under the excitation of electromagnetic pulse, because of quantum coherence, the dual-well semiconductor has the ability to induce the dark state of solitons. In the study of the complicated system of multiple physical fields, two aspects need investigating further. Firstly, in the induction process of electromagnetic filed and solid material, the features of high dispersion and nonlinear reaction appear increasingly. Thus, due to the environmental restriction on dispersion and nonlinear reaction, electromagnetic dissipation is a crucial point, which needs considering in the electromagnetically-controlled precision of the EIT. Secondly, compared with the formation of soliton, the coupling reaction of solitons under co-sate is much complicated. The relation among these factors is necessary to be investigated in the formulation of soliton excitation. Therefore, a dual-well semiconductor is employed as solid environment to analyze the dynamic characteristics of dark solitons in the EIT. In order to achieve the controlling of precision and regulating of the effect, the environmental features of solid materials ought to be systematically considered. Accordingly, the variational method is utilized, through which the bounded action of dissipation and nonlinear coherence is effectively studied for the dark solitons under co-sate, and under the condition of exciting dark soliton in the system of EIT. Using the density matrix and electric polarization, the spectrum of dynamic transmission deviation of EIT is calculated in the solid environment. With the assistance of relevant action principle, the bounded relation of dark solitons under co-state is practically investigated in the dissipative environment of solid system. In addition, the space-time trajectory is analyzed in the applicable region of characteristic equations of dark solution. The deduced result indicates that the systematical balance between dissipative weakening and coherent coupling supports the valuable approach to controlling the space-time evolution of dark solitons in precision. The results also show that the special effect has the potential applications in electromagnetically-controlled precision in the quantum information, ray sensor, controllable environment, etc.
      通信作者: 谭康伯, kbtan@mail.xidian.edu.cn
      Corresponding author: Tan Kang-Bo, kbtan@mail.xidian.edu.cn
    [1]

    Harris S E 1997 Phys. Today 50 36

    [2]

    Fleischhauer M, Imamoglu A, Marangos J P 2009 Rev. Mod. Phys. 77 633

    [3]

    Liu S Y, Zheng B S, Li H M, Liu X C, Liu S B 2015 Chin. Phys. B 24 084204

    [4]

    Niakan N, Askari M, Zakery A 2012 J. Opt. Soc. Am. B 29 2329

    [5]

    Xu Z X, Li S L, Yin X X, Zhao H X, Liu L L 2017 Sci. Rep. 7 6098

    [6]

    Totsuka K, Kobayashi N, Tomita M 2007 Phys. Rev. Lett. 98 213904

    [7]

    Rose H A, Mounaix P 2011 Phys. Plasmas 18 042109

    [8]

    Liu L Q, Zhang Y, Geng Y C, Wang W Y, Zhu Q H, Jing F, Wei X F, Huang W Q 2014 Acta Phys. Sin. 63 164201 (in Chinese) [刘兰琴, 张颖, 耿远超, 王文义, 朱启华, 景峰, 魏晓峰, 黄晚晴 2014 物理学报 63 164201]

    [9]

    Qi X Y, Cao Z, Bai J T 2013 Acta Phys. Sin. 62 064217 (in Chinese) [齐新元, 曹政, 白晋涛 2013 物理学报 62 064217]

    [10]

    Zhang L S, Yang L J, Li X L, Han L, Li X W, Guo Q L, Fu G S 2007 Acta Opt. Sin. 27 1305 (in Chinese) [张连水, 杨丽君, 李晓莉, 韩理, 李晓苇, 郭庆林, 傅广生 2007 光学学报 27 1305]

    [11]

    Li X L, Zhang L S, Yang B Z, Yang L J 2010 Acta Phys. Sin. 59 7008 (in Chinese) [李晓莉, 张连水, 杨宝柱, 杨丽君 2010 物理学报 59 7008]

    [12]

    Wang L, Hu X M 2004 Acta Phys. Sin. 53 2551 (in Chinese) [王丽, 胡响明 2004 物理学报 53 2551]

    [13]

    Li X L, Shang Y X, Sun J 2013 Acta Phys. Sin. 62 064202 (in Chinese) [李晓莉, 尚雅轩, 孙江 2013 物理学报 62 064202]

    [14]

    Tang H, Wang D L, Zhang W X, Ding J W, Xiao S G 2017 Acta Phys. Sin. 66 034202 (in Chinese) [唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国 2017 物理学报 66 034202]

    [15]

    Zhu K Z, Jia W G, Zhang K, Yu Y, Zhang J P 2016 Acta Phys. Sin. 65 074204 (in Chinese) [朱坤占, 贾维国, 张魁, 于宇, 张俊萍 2016 物理学报 65 074204]

    [16]

    Xi T T, Zhang J, Lu X, Hao Z Q, Yang H, Dong Q L, Wu H C 2006 Chin. Phys. 15 2025

    [17]

    Ponomarenko S A, Agrawal G P 2006 Phys. Rev. Lett. 97 013901

    [18]

    Gao X H, Zhang C Y, Tang D, Zheng H, Lu D Q, Hu W 2013 Acta Phys. Sin. 62 044214 (in Chinese) [高星辉, 张承云, 唐冬, 郑晖, 陆大全, 胡巍 2013 物理学报 62 044214]

    [19]

    Du Y J, Xie X T, Yang Z Y, Bai J T 2015 Acta Phys. Sin. 64 064202 (in Chinese) [杜英杰, 谢小涛, 杨战营, 白晋涛 2015 物理学报 64 064202]

    [20]

    Zhong W P, Huang H 1995 Acta Opt. Sin. 15 202 (in Chinese) [钟卫平, 黄辉1995光学学报 15 202]

    [21]

    Jiang J H, Li Z P 2004 Acta Phys. Sin. 53 2991 (in Chinese) [江金环, 李子平 2004 物理学报 53 2991]

    [22]

    Goldstein H 1950 Classical Mechanics (Cambridge, MA:Addison-Wesley) pp68-96

    [23]

    Wang Z X, Guo D R 2000 Introduction to Special Function (Beijing:Peking University Press) pp334-415 (in Chinese) [王竹溪, 郭敦仁 2000 特殊函数概论(北京:北京大学出版社)第337–415页]

  • [1]

    Harris S E 1997 Phys. Today 50 36

    [2]

    Fleischhauer M, Imamoglu A, Marangos J P 2009 Rev. Mod. Phys. 77 633

    [3]

    Liu S Y, Zheng B S, Li H M, Liu X C, Liu S B 2015 Chin. Phys. B 24 084204

    [4]

    Niakan N, Askari M, Zakery A 2012 J. Opt. Soc. Am. B 29 2329

    [5]

    Xu Z X, Li S L, Yin X X, Zhao H X, Liu L L 2017 Sci. Rep. 7 6098

    [6]

    Totsuka K, Kobayashi N, Tomita M 2007 Phys. Rev. Lett. 98 213904

    [7]

    Rose H A, Mounaix P 2011 Phys. Plasmas 18 042109

    [8]

    Liu L Q, Zhang Y, Geng Y C, Wang W Y, Zhu Q H, Jing F, Wei X F, Huang W Q 2014 Acta Phys. Sin. 63 164201 (in Chinese) [刘兰琴, 张颖, 耿远超, 王文义, 朱启华, 景峰, 魏晓峰, 黄晚晴 2014 物理学报 63 164201]

    [9]

    Qi X Y, Cao Z, Bai J T 2013 Acta Phys. Sin. 62 064217 (in Chinese) [齐新元, 曹政, 白晋涛 2013 物理学报 62 064217]

    [10]

    Zhang L S, Yang L J, Li X L, Han L, Li X W, Guo Q L, Fu G S 2007 Acta Opt. Sin. 27 1305 (in Chinese) [张连水, 杨丽君, 李晓莉, 韩理, 李晓苇, 郭庆林, 傅广生 2007 光学学报 27 1305]

    [11]

    Li X L, Zhang L S, Yang B Z, Yang L J 2010 Acta Phys. Sin. 59 7008 (in Chinese) [李晓莉, 张连水, 杨宝柱, 杨丽君 2010 物理学报 59 7008]

    [12]

    Wang L, Hu X M 2004 Acta Phys. Sin. 53 2551 (in Chinese) [王丽, 胡响明 2004 物理学报 53 2551]

    [13]

    Li X L, Shang Y X, Sun J 2013 Acta Phys. Sin. 62 064202 (in Chinese) [李晓莉, 尚雅轩, 孙江 2013 物理学报 62 064202]

    [14]

    Tang H, Wang D L, Zhang W X, Ding J W, Xiao S G 2017 Acta Phys. Sin. 66 034202 (in Chinese) [唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国 2017 物理学报 66 034202]

    [15]

    Zhu K Z, Jia W G, Zhang K, Yu Y, Zhang J P 2016 Acta Phys. Sin. 65 074204 (in Chinese) [朱坤占, 贾维国, 张魁, 于宇, 张俊萍 2016 物理学报 65 074204]

    [16]

    Xi T T, Zhang J, Lu X, Hao Z Q, Yang H, Dong Q L, Wu H C 2006 Chin. Phys. 15 2025

    [17]

    Ponomarenko S A, Agrawal G P 2006 Phys. Rev. Lett. 97 013901

    [18]

    Gao X H, Zhang C Y, Tang D, Zheng H, Lu D Q, Hu W 2013 Acta Phys. Sin. 62 044214 (in Chinese) [高星辉, 张承云, 唐冬, 郑晖, 陆大全, 胡巍 2013 物理学报 62 044214]

    [19]

    Du Y J, Xie X T, Yang Z Y, Bai J T 2015 Acta Phys. Sin. 64 064202 (in Chinese) [杜英杰, 谢小涛, 杨战营, 白晋涛 2015 物理学报 64 064202]

    [20]

    Zhong W P, Huang H 1995 Acta Opt. Sin. 15 202 (in Chinese) [钟卫平, 黄辉1995光学学报 15 202]

    [21]

    Jiang J H, Li Z P 2004 Acta Phys. Sin. 53 2991 (in Chinese) [江金环, 李子平 2004 物理学报 53 2991]

    [22]

    Goldstein H 1950 Classical Mechanics (Cambridge, MA:Addison-Wesley) pp68-96

    [23]

    Wang Z X, Guo D R 2000 Introduction to Special Function (Beijing:Peking University Press) pp334-415 (in Chinese) [王竹溪, 郭敦仁 2000 特殊函数概论(北京:北京大学出版社)第337–415页]

  • [1] 杜泊船, 田圃. 分子体系自由能地貌图的变分分析及AI算法实现. 物理学报, 2024, 73(6): 068702. doi: 10.7498/aps.73.20231800
    [2] 李森清, 张肖, 林机. 非局域非线性耦合器中暗孤子的传输. 物理学报, 2021, 70(18): 184206. doi: 10.7498/aps.70.20210275
    [3] 谭康伯, 路宏敏, 苏涛. 等离子环境中带电体能量的Collin变分. 物理学报, 2018, 67(20): 209401. doi: 10.7498/aps.67.20180504
    [4] 唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国. 纵波光学声子耦合对级联型电磁感应透明半导体量子阱中暗-亮光孤子类型的调控. 物理学报, 2017, 66(3): 034202. doi: 10.7498/aps.66.034202
    [5] 谢元栋. 各向异性海森伯自旋链中的高阶孤子. 物理学报, 2016, 65(20): 207501. doi: 10.7498/aps.65.207501
    [6] 刘梦珂, 张辉, 范宝春, 韩洋, 归明月. 电磁控制两自由度涡生振荡的机理研究. 物理学报, 2016, 65(24): 244702. doi: 10.7498/aps.65.244702
    [7] 闫青, 贾维国, 于宇, 张俊萍, 门克内木乐. 拉曼增益对高双折射光纤中暗孤子俘获的影响. 物理学报, 2015, 64(18): 184211. doi: 10.7498/aps.64.184211
    [8] 潘楠, 黄平, 黄龙刚, 雷鸣, 刘文军. 非均匀光纤中暗孤子传输特性研究. 物理学报, 2015, 64(9): 090504. doi: 10.7498/aps.64.090504
    [9] 杜英杰, 谢小涛, 杨战营, 白晋涛. 电磁诱导透明系统中的暗孤子. 物理学报, 2015, 64(6): 064202. doi: 10.7498/aps.64.064202
    [10] 高星辉, 张承云, 唐冬, 郑晖, 陆大全, 胡巍. 非局域暗孤子及其稳定性分析. 物理学报, 2013, 62(4): 044214. doi: 10.7498/aps.62.044214
    [11] 张蔚曦, 佘彦超, 王登龙. 计及两体和三体作用下的二维凝聚体中的孤子特性. 物理学报, 2011, 60(7): 070514. doi: 10.7498/aps.60.070514
    [12] 高星辉, 杨振军, 周罗红, 郑一周, 陆大全, 胡巍. 非局域程度对空间暗孤子相互作用的影响. 物理学报, 2011, 60(8): 084213. doi: 10.7498/aps.60.084213
    [13] 崔虎, 张冰志, 佘卫龙. 非相干耦合的亮和暗光伏空间孤子对的偏转特性. 物理学报, 2010, 59(3): 1823-1830. doi: 10.7498/aps.59.1823
    [14] 佘彦超, 王登龙, 丁建文. 电磁感应透明介质中的弱光空间暗孤子环. 物理学报, 2009, 58(5): 3198-3202. doi: 10.7498/aps.58.3198
    [15] 谭康伯, 梁昌洪. 有耗孤子的最小作用量原理及其在二维光子带隙结构中的应用. 物理学报, 2007, 56(5): 2704-2708. doi: 10.7498/aps.56.2704
    [16] 田贵花, 赵 峥. 一类类光测地线的加速度. 物理学报, 2004, 53(6): 1662-1664. doi: 10.7498/aps.53.1662
    [17] 江德生, 欧阳世根, 佘卫龙. 暗-暗与亮-暗光伏孤子相互作用. 物理学报, 2004, 53(11): 3777-3785. doi: 10.7498/aps.53.3777
    [18] 陆 猗, 刘思敏, 郭 儒, 杨立森, 黄春福, 汪大云. 完全非相干白光一维光生伏打暗空间孤子. 物理学报, 2003, 52(12): 3075-3081. doi: 10.7498/aps.52.3075
    [19] 侯春风, 李师群, 李斌, 孙秀冬. 有外加电场的光伏光折变晶体中的非相干耦合亮-暗屏蔽光伏孤子对. 物理学报, 2001, 50(9): 1709-1712. doi: 10.7498/aps.50.1709
    [20] 佘卫龙, 王晓生, 何国岗, 陶孟仙, 林励平, 李荣基. 折射率改变为正的光折变晶体中形成一维光伏暗孤子. 物理学报, 2001, 50(11): 2166-2171. doi: 10.7498/aps.50.2166
计量
  • 文章访问数:  5796
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-01
  • 修回日期:  2017-12-28
  • 刊出日期:  2019-03-20

/

返回文章
返回