搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于转捩模型及声比拟方法的高精度圆柱分离涡/涡致噪声模拟

王光学 王圣业 葛明明 邓小刚

引用本文:
Citation:

基于转捩模型及声比拟方法的高精度圆柱分离涡/涡致噪声模拟

王光学, 王圣业, 葛明明, 邓小刚

High-order delay detached-eddy simulations of cylindrical separated vortex/vortex induced noise based on transition model and acoustic analogy

Wang Guang-Xue, Wang Sheng-Ye, Ge Ming-Ming, Deng Xiao-Gang
PDF
导出引用
  • 基于七阶加权紧致非线性格式(WCNS-E8T7),结合延迟分离涡模拟(DDES)和Ffowcs Williams-Hawkings声比拟方法,对亚临界雷诺数下单圆柱、圆柱-翼型的分离涡/涡致噪声问题进行了数值模拟.针对亚临界雷诺数下圆柱尾迹中的转捩问题,发展了基于-Re模型高精度转捩-延迟分离涡模拟(Tran-DDES)方法,并与传统基于全湍流剪切应力输运(SST)模型的高精度DDES方法进行了对比.单圆柱模拟结果表明:传统SST-DDES方法会造成平均流场的回流区增大,压差阻力偏小等问题;而添加转捩模型的Tran-DDES方法与实验符合得很好.圆柱尾迹中添加翼型后,翼型对圆柱附近流场产生影响,使SST-DDES方法造成的圆柱后回流区偏大的问题减弱,并与Tran-DDES模拟结果差异变小.但在脉动量预测以及脉动产生的噪声预测方面,Tran-DDES方法仍与实验符合得更好.
    The numerical prediction of transition from laminar to turbulent flow has proven to be an arduous challenge to computational fluid dynamics (CFD). Few approaches can provide routine accurate results within the cost limitations of engineering applications. In the present paper described is the application of a -Re transition model in combination with the delay detached eddy simulation (DDES) and Ffowcs Williams and Hawkings (FW-H) acoustic analogy method to cylinder vortex/vortex induced noise at a subcritical Reynolds number. In the process of numerical simulation, a traditional DDES based on the full-turbulence model SST is carried out for comparison and a 7th-order weighted compact nonlinear scheme (WCNS-E8T7) is adopted to ensure that the physical models are not affected by numerical dissipation or dispersion. In the first case, single cylinder cross-flow at ReD =4.3104 and Ma=0.21, is considered as a benchmarking problem for validating turbulence models and aerodynamic noise prediction methods. Its aerodynamic coefficients, St, CL and CD at root-mean-square (rms) and averaged values are measured by Szepessy and Bearman, while an acoustic measurement was recently made at Ecole Centrale de Lyon. The traditional DDES only based on SST model (SST-DDES) delays the instability of the shear layer on the sides of the cylinder, which leads to the recirculation zone in mean flow to grow and the induced drag to increase. Moreover, the vortex shedding frequency predicted by SST-DDES is larger than the actual value, which makes the whole sound pressure level (SPL) spectrum move toward high frequency region. However, combining the -Re transition model, the DDES (called Tran-DDES in the present article) can give the results in good agreement with the experimental data. In the second case considered is an airfoil in the wake of the cylinder. The flow condition is similar to that in the first case and the experimental results are also obtained at Ecole Centrale de Lyon. The issue of SST-DDES in recirculation zone in mean flow is weakened, which relates to the interaction between the airfoil and cylinder wake, the prediction of mean flow by SST-DDES is similar to that by the Tran-DDES. But in terms of the rms values of turbulent fluctuation components and SPL, the predictions by Tran-DDES are still better than those by SST-DDES.
      通信作者: 王圣业, wangshengye0415@sina.com
    • 基金项目: 国防科学技术大学科研计划(批准号:ZDYYJCYJ20140101)资助的课题.
      Corresponding author: Wang Sheng-Ye, wangshengye0415@sina.com
    • Funds: Project supported by the Foundation of the National University of Defense Technology of China (Grant No. ZDYYJCYJ20140101).
    [1]

    Hodara J, Smith M 2017 AIAA J. 1 1

    [2]

    Seo J, Chang K, Moon Y 2006 12th AIAA/CEAS Aeroacoustics Conference Cambridge, Massachusetts, May 8-10, 2006 AIAA 2006-2573

    [3]

    Boudet J, Grosjean N, Jacob M 2005 Intl J. Aeroacoust 4 93

    [4]

    Giret J C, Sengissen A, Moreau S, Sanjos M 2015 AIAA J. 53 1062

    [5]

    Jiang Y, Mao M, Deng X, Liu H 2015 J. Fluid Mech. 779 1

    [6]

    Langtry R, Menter F 2009 AIAA J. 47 2894

    [7]

    Spalart P 2009 Annu. Rev. Fluid Mech. 41 181

    [8]

    Menter M, Kuntz M, Bender R 2003 41st Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 6-9, 2003 AIAA 2003-767

    [9]

    Langtry R, Gola J, Menter F 2006 44th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 9-12, 2006 AIAA 2006-395

    [10]

    Srensen N, Bechmann A, Zahle F 2011 Wind Energ. 14 77

    [11]

    You J, Kwon O 2013 Comput. Fluids 80 63

    [12]

    Qiao L, Bai J, Hua J, Wang C 2014 Appl. Mech. Materials 444-445 374

    [13]

    Snchez-Rocha M, Menon S 2009 J. Comput. Phys. 228 2037

    [14]

    Wang S Y, Wang G X, Dong Y D, Deng X G (in Chinese) [王圣业, 王光学, 董义道, 邓小刚 2016 国防科技大学学报 38 14]

    [15]

    Spalart P, Jou W H, Strelets M, Allmaras S 1997 1st AFOSR International Conference on DNS/LES Ruston, Louisiana, August 4-8, 1997

    [16]

    Strelets M 2001 39th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 8-11, 2001 AlAA 2001-0879

    [17]

    Spalart P, Deck S, Shur M, Squires K, Strelets M, Travin A 2006 Theor. Comput. Fluid Dyn. 20 181

    [18]

    Francescantonio P 1997 J. Sound Vibration 202 491

    [19]

    Kato C, Iida A, Takano Y, Fujita H, Ikegawa M 1993 31st Aerospace Scmces Meeting Exhibit Reno, Nevada, January 11-14, 1993 AIAA 1993-145

    [20]

    Deng X, Zhang H 2000 J. Comput. Phys. 165 22

    [21]

    Nonomura T, Fujii K 2009 J. Comput. Phys. 228 3533

    [22]

    Liu H, Ma Y, Yan Z, Mao M, Deng X 2014 8th International Conference on Computational Fluid Dynamics Chengdu, China, July 14-18, 2014 ICCFD8-2014-0082

    [23]

    Gang D D, Yi S H, Zhao Y F 2015 Acta Phys. Sin. 64 054705 (in Chinese) [冈敦殿, 易仕和, 赵云飞 2015 物理学报 64 054705]

    [24]

    Wang S Y, Wang G X, Dong Y D, Deng X G 2017 Acta Phys. Sin. 66 184701 (in Chinese) [王圣业, 王光学, 董义道, 邓小刚 2017 物理学报 66 184701]

    [25]

    Wang S, Deng X, Wang G, Xu D, Wang D 2016 Inter. J. Comput. Fluid Dyn. 30 7

    [26]

    Deng X, Mao M, Tu G, Liu H, Zhang H 2011 J. Comput. Phys. 230 1100

    [27]

    Szepessy S, Bearman P 1992 J. Fluid Mech. 234 191

    [28]

    van Leer B 1979 J. Comput. Phys. 32 101

    [29]

    Jacob M, Boudet J, Casalino D, Michard M 2005 Theoret. Comput. Fluid Dyn. 19 171

    [30]

    Agrawal B, Sharma A 2014 20th AIAA/CEAS Aeroacoustics Conference Atlanta, GA, June 16-20, 2014 AIAA 2014-3295

    [31]

    Greschner B, Thiele F, Jacob M, Casalino D 2008 Comput. Fluid 37 402

    [32]

    Galdeano S, Barr S, Rau N 2010 16th AIAA/CEAS Aeroacoustics Conference Stockholm, Sweden, June 7-9, 2010 AIAA 2010-3702

  • [1]

    Hodara J, Smith M 2017 AIAA J. 1 1

    [2]

    Seo J, Chang K, Moon Y 2006 12th AIAA/CEAS Aeroacoustics Conference Cambridge, Massachusetts, May 8-10, 2006 AIAA 2006-2573

    [3]

    Boudet J, Grosjean N, Jacob M 2005 Intl J. Aeroacoust 4 93

    [4]

    Giret J C, Sengissen A, Moreau S, Sanjos M 2015 AIAA J. 53 1062

    [5]

    Jiang Y, Mao M, Deng X, Liu H 2015 J. Fluid Mech. 779 1

    [6]

    Langtry R, Menter F 2009 AIAA J. 47 2894

    [7]

    Spalart P 2009 Annu. Rev. Fluid Mech. 41 181

    [8]

    Menter M, Kuntz M, Bender R 2003 41st Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 6-9, 2003 AIAA 2003-767

    [9]

    Langtry R, Gola J, Menter F 2006 44th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 9-12, 2006 AIAA 2006-395

    [10]

    Srensen N, Bechmann A, Zahle F 2011 Wind Energ. 14 77

    [11]

    You J, Kwon O 2013 Comput. Fluids 80 63

    [12]

    Qiao L, Bai J, Hua J, Wang C 2014 Appl. Mech. Materials 444-445 374

    [13]

    Snchez-Rocha M, Menon S 2009 J. Comput. Phys. 228 2037

    [14]

    Wang S Y, Wang G X, Dong Y D, Deng X G (in Chinese) [王圣业, 王光学, 董义道, 邓小刚 2016 国防科技大学学报 38 14]

    [15]

    Spalart P, Jou W H, Strelets M, Allmaras S 1997 1st AFOSR International Conference on DNS/LES Ruston, Louisiana, August 4-8, 1997

    [16]

    Strelets M 2001 39th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 8-11, 2001 AlAA 2001-0879

    [17]

    Spalart P, Deck S, Shur M, Squires K, Strelets M, Travin A 2006 Theor. Comput. Fluid Dyn. 20 181

    [18]

    Francescantonio P 1997 J. Sound Vibration 202 491

    [19]

    Kato C, Iida A, Takano Y, Fujita H, Ikegawa M 1993 31st Aerospace Scmces Meeting Exhibit Reno, Nevada, January 11-14, 1993 AIAA 1993-145

    [20]

    Deng X, Zhang H 2000 J. Comput. Phys. 165 22

    [21]

    Nonomura T, Fujii K 2009 J. Comput. Phys. 228 3533

    [22]

    Liu H, Ma Y, Yan Z, Mao M, Deng X 2014 8th International Conference on Computational Fluid Dynamics Chengdu, China, July 14-18, 2014 ICCFD8-2014-0082

    [23]

    Gang D D, Yi S H, Zhao Y F 2015 Acta Phys. Sin. 64 054705 (in Chinese) [冈敦殿, 易仕和, 赵云飞 2015 物理学报 64 054705]

    [24]

    Wang S Y, Wang G X, Dong Y D, Deng X G 2017 Acta Phys. Sin. 66 184701 (in Chinese) [王圣业, 王光学, 董义道, 邓小刚 2017 物理学报 66 184701]

    [25]

    Wang S, Deng X, Wang G, Xu D, Wang D 2016 Inter. J. Comput. Fluid Dyn. 30 7

    [26]

    Deng X, Mao M, Tu G, Liu H, Zhang H 2011 J. Comput. Phys. 230 1100

    [27]

    Szepessy S, Bearman P 1992 J. Fluid Mech. 234 191

    [28]

    van Leer B 1979 J. Comput. Phys. 32 101

    [29]

    Jacob M, Boudet J, Casalino D, Michard M 2005 Theoret. Comput. Fluid Dyn. 19 171

    [30]

    Agrawal B, Sharma A 2014 20th AIAA/CEAS Aeroacoustics Conference Atlanta, GA, June 16-20, 2014 AIAA 2014-3295

    [31]

    Greschner B, Thiele F, Jacob M, Casalino D 2008 Comput. Fluid 37 402

    [32]

    Galdeano S, Barr S, Rau N 2010 16th AIAA/CEAS Aeroacoustics Conference Stockholm, Sweden, June 7-9, 2010 AIAA 2010-3702

  • [1] 牛中国, 许相辉, 王建锋, 蒋甲利, 梁华. 飞翼模型纵向气动特性等离子体流动控制试验. 物理学报, 2022, 71(2): 024702. doi: 10.7498/aps.71.20211425
    [2] 陈彦君, 王圣业, 符翔, 刘伟. 基于νt尺度方程的雷诺应力模型初步研究. 物理学报, 2022, 71(16): 164701. doi: 10.7498/aps.71.20220417
    [3] 牛中国, 许相辉, 王建峰, 蒋甲利, 梁华. 飞翼模型纵向气动特性等离子体流动控制试验研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211425
    [4] 郑天韵, 王圣业, 王光学, 邓小刚. 基于深度残差网络的高精度自然转捩模拟方法. 物理学报, 2020, 69(20): 204701. doi: 10.7498/aps.69.20200563
    [5] 任金莲, 任恒飞, 陆伟刚, 蒋涛. 基于分裂格式有限点集法对孤立波二维非线性问题的模拟. 物理学报, 2019, 68(14): 140203. doi: 10.7498/aps.68.20190340
    [6] 葛明明, 王圣业, 王光学, 邓小刚. 基于混合雷诺平均/高精度隐式大涡模拟方法的高升力体气动噪声模拟. 物理学报, 2019, 68(20): 204702. doi: 10.7498/aps.68.20190777
    [7] 王圣业, 王光学, 董义道, 邓小刚. 基于雷诺应力模型的高精度分离涡模拟方法. 物理学报, 2017, 66(18): 184701. doi: 10.7498/aps.66.184701
    [8] 张世功, 吴先梅, 张碧星. 基于迟滞应力应变关系的非线性声学检测理论与方法研究. 物理学报, 2014, 63(19): 194302. doi: 10.7498/aps.63.194302
    [9] 何兆成, 孙文博. 考虑横向分离与超车期望的车辆跟驰模型. 物理学报, 2013, 62(10): 108901. doi: 10.7498/aps.62.108901
    [10] 孙宏伟, 林国昌, 杜星文, P.F. Pai. 一种新型声学超材料平板对机械波吸收性能的模拟与实验研究. 物理学报, 2012, 61(15): 154302. doi: 10.7498/aps.61.154302
    [11] 彭凯, 刘大刚. 三维热场致发射模型的数值模拟与研究. 物理学报, 2012, 61(12): 121301. doi: 10.7498/aps.61.121301
    [12] 包伯成, 刘中, 许建平, 朱雷. 基于Colpitts振荡器模型生成的多涡卷超混沌吸引子. 物理学报, 2010, 59(3): 1540-1548. doi: 10.7498/aps.59.1540
    [13] 李明生, 蔡晓红. 基于联合分离原子模型的电离理论. 物理学报, 2007, 56(8): 4448-4453. doi: 10.7498/aps.56.4448
    [14] 沈守枫. 高维微分-差分模型的Virasoro对称子代数,多线性变量分离解和局域激发模式. 物理学报, 2006, 55(11): 5606-5610. doi: 10.7498/aps.55.5606
    [15] 莫嘉琪, 林万涛. ENSO非线性模型的摄动解. 物理学报, 2004, 53(4): 996-998. doi: 10.7498/aps.53.996
    [16] 李存标. 关于转捩边界层中流向涡的产生. 物理学报, 2001, 50(1): 182-184. doi: 10.7498/aps.50.182
    [17] 钱祖文. 非线性声学谐波方程的特解及其在边值问题中的应用. 物理学报, 1993, 42(6): 949-953. doi: 10.7498/aps.42.949
    [18] 雷啸霖, 丁秦生. 非线性电子输运中声学和光学声子的联合散射效应. 物理学报, 1985, 34(8): 983-991. doi: 10.7498/aps.34.983
    [19] 冯若, 龚秀芬, 朱正亚, 石涛. 生物媒质中非线性声学参量B/A的研究. 物理学报, 1984, 33(9): 1282-1286. doi: 10.7498/aps.33.1282
    [20] 谢信能. 一种简便的气动真空阀. 物理学报, 1976, 25(3): 271-272. doi: 10.7498/aps.25.271
计量
  • 文章访问数:  5884
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-17
  • 修回日期:  2018-08-10
  • 刊出日期:  2018-10-05

/

返回文章
返回