-
Laser-induced breakdown spectroscopy (LIBS) is a well-known analytical technique based on the atomic emission spectroscopy.The elemental composition and relative abundance information can be obtained by analyzing the plasma radiation generated by focusing high-energy pulsed laser on the sample.It has a wide range of applications due to its many advantages,such as minimal-to-no sample preparation,broad applicability,and in-situ capability.But in LIBS,the self-absorption effect of the emitted line can reduce the spectral line intensity,and then affect the precision and accuracy of LIBS quantitative analysis.So there are many methods and researches to reduce or eliminate the adverse effects of selfabsorption on spectral lines.In this paper,a self-absorption quantification analysis method is proposed to characterize the laser-induced plasma quantitative parameters.This self-absorption quantification analysis method,which utilizes the intensity independent information in the self-absorbed spectral lines,is proposed to characterize the induced plasma and perform quantitative measurements.The plasma characteristics including electron temperature,elemental concentration ratio,and absolute species number density can be derived directly through quantifying the self-absorption degree of the analytical spectral lines.Compared with the traditional laser-induced breakdown spectroscopy,the new method is weakly related to the spectral intensity:neither the analysis results are affected by the self-absorption effects,nor the additional spectral efficiency calibration is required.The LIBS spectrum of an aluminum-lithium alloy (nominal weight compositions are Al 94.6%,Mg 1.8%,Li 0.8%,Cu 2.59%,and Mn 0.21%) is used to calculate the spatiallyaveraged electron temperature and the concentration ratio between Mg and Al,and the species number densities is obtained by using the proposed self-absorption quantification method.The results of experiment on aluminum-lithium alloy show that the mean electron temperatures obtained by the modified Saha-Boltzmann plots determined by Mg and Al are 0.96 eV and 0.97 eV,respectively.The weight ratio wMg/wAl in the plasma is calculated to be 0.0171,which is approximately coincident with the nominal value of 0.0169.The absolute singly ionized number density of matrix element Al is 1:65×1017 cm-3,which is comparable to the electron density calculated from the Hα line broadening (1:72×1017 cm-3).Evidently,the free electrons present in the plasma are mainly contributed by the singly ionized matrix element Al.These experimental results of aluminum-lithium alloy validate that the proposed method is qualified to realize accurate absolute quantitative measurements and fast diagnose the plasma characteristics,which verifies the practicability,advantages,and precision of this method.This self-absorption quantification method is of great significance for quantitative LIBS analysis,especially the CF-LIBS analysis.
-
Keywords:
- laser-induced breakdown spectroscopy (LIBS) /
- self-absorption quantification /
- quantitative analysis /
- plasma
[1] Aryal K, Khatri H, Collins R W, Marsillac S 2012 Int. J. Photo Energ. 2012 7863
[2] Wang Z, Li L Z, West L, Li Z, Ni W D 2012 Spectrochim. Acta B 68 58
[3] Wang Z, Yuan T B, Lui S L, Hou Z Y, Li X W, Li Z, Ni W D 2012 Front. Phys. 7 708
[4] Yao S C, Lu J D, Chen K, Pan S H, Li J Y, Dong M R 2011 Appl. Surf. Sci. 257 3103
[5] Hai R, Farid N, Zhao D Y, Zhang L, Liu J H, Ding H B, Wu J, Luo G N 2013 Spectrochim. Acta B 87 147
[6] Du C, Gao X, Shao Y, Song X Y, Zhao Z M, Hao Z Q, Lin J Q 2013 Acta Phys. Sin. 62 045202 (in Chinese) [杜闯, 高勋, 邵妍, 宋晓伟, 赵振明, 郝作强, 林景全 2013 物理学报 62 045202]
[7] Chen T B, Yao M Y, Liu M H, Lin Y Z, Li W B, Zheng M L, Zhou H M 2014 Acta Phys. Sin. 63 104213 (in Chinese) [陈添兵, 姚明印, 刘木华, 林永增, 黎文兵, 郑美兰, 周华茂 2014 物理学报 63 104213]
[8] Sun D X, Su M G, Dong C Z, Wang X L, Zhang D C, Ma X W 2010 Acta Phys. Sin. 59 4571 (in Chinese) [孙对兄, 苏茂根, 董晨钟, 王向丽, 张大成, 马新文 2010 物理学报 59 4571]
[9] Liu Y F, Ding Y J, Peng Z M, Huang Y, Du Y J 2014 Acta Phys. Sin. 63 205205 (in Chinese) [刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君 2014 物理学报 63 205205]
[10] Yang W B, Zhou J N, Li B C, Xing T W 2017 Acta Phys. Sin. 66 095201 (in Chinese) [杨文斌, 周江宁, 李斌成, 邢廷文 2017 物理学报 66 095201]
[11] Bulajic D, Corsi M, Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Tognoni E 2002 Spectrochim. Acta B 57 339
[12] Amamou H, Bois A, Ferhat B, Redon R, Rossetto B, Matheron P 2002 J. Quant. Spectrosc. Radiat. Transfer 75 747
[13] St-Onge L, Kwong E, Sabsabi M, Vadas E B 2004 J. Pharm. Biomed. Anal. 36 277
[14] El Sherbini A M, El Sherbini T M, Hegazy H, Cristoforetti G, Legnaioli S, Palleschi V, Pardini L, Salvetti A, Tognoni E 2005 Spectrochim. Acta B 60 1573
[15] Sun L, Yu H 2009 Talanta. 79 388
[16] Li J M, Guo L B, Li C M, Zhao N, Yang X Y, Hao Z Q, Li X Y, Zeng X Y, Lu Y F 2015 Opt. Lett. 40 5224
[17] Lochte-Holtgreven W 1995 Plasma Diagnostics (New York: AIP Press American Institute of Physics)
[18] Kepple P, Griem H R 1968 Phys. Rev. 173 317
[19] Cristoforetti G, Lorenzetti G, Legnaioli S, Palleschi V 2010 Spectrochim. Acta Part B 65 787
[20] Cristoforetti G, de Giacomo A, Dell'Aglio M, Legnaioli S, Tognoni E, Palleschi V, Omenetto N 2010 Spectrochim. Acta B 65 86
-
[1] Aryal K, Khatri H, Collins R W, Marsillac S 2012 Int. J. Photo Energ. 2012 7863
[2] Wang Z, Li L Z, West L, Li Z, Ni W D 2012 Spectrochim. Acta B 68 58
[3] Wang Z, Yuan T B, Lui S L, Hou Z Y, Li X W, Li Z, Ni W D 2012 Front. Phys. 7 708
[4] Yao S C, Lu J D, Chen K, Pan S H, Li J Y, Dong M R 2011 Appl. Surf. Sci. 257 3103
[5] Hai R, Farid N, Zhao D Y, Zhang L, Liu J H, Ding H B, Wu J, Luo G N 2013 Spectrochim. Acta B 87 147
[6] Du C, Gao X, Shao Y, Song X Y, Zhao Z M, Hao Z Q, Lin J Q 2013 Acta Phys. Sin. 62 045202 (in Chinese) [杜闯, 高勋, 邵妍, 宋晓伟, 赵振明, 郝作强, 林景全 2013 物理学报 62 045202]
[7] Chen T B, Yao M Y, Liu M H, Lin Y Z, Li W B, Zheng M L, Zhou H M 2014 Acta Phys. Sin. 63 104213 (in Chinese) [陈添兵, 姚明印, 刘木华, 林永增, 黎文兵, 郑美兰, 周华茂 2014 物理学报 63 104213]
[8] Sun D X, Su M G, Dong C Z, Wang X L, Zhang D C, Ma X W 2010 Acta Phys. Sin. 59 4571 (in Chinese) [孙对兄, 苏茂根, 董晨钟, 王向丽, 张大成, 马新文 2010 物理学报 59 4571]
[9] Liu Y F, Ding Y J, Peng Z M, Huang Y, Du Y J 2014 Acta Phys. Sin. 63 205205 (in Chinese) [刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君 2014 物理学报 63 205205]
[10] Yang W B, Zhou J N, Li B C, Xing T W 2017 Acta Phys. Sin. 66 095201 (in Chinese) [杨文斌, 周江宁, 李斌成, 邢廷文 2017 物理学报 66 095201]
[11] Bulajic D, Corsi M, Cristoforetti G, Legnaioli S, Palleschi V, Salvetti A, Tognoni E 2002 Spectrochim. Acta B 57 339
[12] Amamou H, Bois A, Ferhat B, Redon R, Rossetto B, Matheron P 2002 J. Quant. Spectrosc. Radiat. Transfer 75 747
[13] St-Onge L, Kwong E, Sabsabi M, Vadas E B 2004 J. Pharm. Biomed. Anal. 36 277
[14] El Sherbini A M, El Sherbini T M, Hegazy H, Cristoforetti G, Legnaioli S, Palleschi V, Pardini L, Salvetti A, Tognoni E 2005 Spectrochim. Acta B 60 1573
[15] Sun L, Yu H 2009 Talanta. 79 388
[16] Li J M, Guo L B, Li C M, Zhao N, Yang X Y, Hao Z Q, Li X Y, Zeng X Y, Lu Y F 2015 Opt. Lett. 40 5224
[17] Lochte-Holtgreven W 1995 Plasma Diagnostics (New York: AIP Press American Institute of Physics)
[18] Kepple P, Griem H R 1968 Phys. Rev. 173 317
[19] Cristoforetti G, Lorenzetti G, Legnaioli S, Palleschi V 2010 Spectrochim. Acta Part B 65 787
[20] Cristoforetti G, de Giacomo A, Dell'Aglio M, Legnaioli S, Tognoni E, Palleschi V, Omenetto N 2010 Spectrochim. Acta B 65 86
计量
- 文章访问数: 6726
- PDF下载量: 123
- 被引次数: 0