搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稳态强磁场的细胞生物学效应

田小飞 张欣

引用本文:
Citation:

稳态强磁场的细胞生物学效应

田小飞, 张欣

Biological effects on cells in strong static magnetic field

Tian Xiao-Fei, Zhang Xin
PDF
导出引用
  • 随着科学技术的发展以及稳态强磁场在医疗诊断中的广泛应用,人们接触到1 T以上稳态强磁场的机会越来越多,稳态强磁场对人体健康的潜在影响也备受关注.虽然目前由于实验条件的限制,稳态强磁场对动物以及人体的研究报道依然有限,但是细胞作为生物体的基本单位,其研究相对较多.然而由于实验中磁场参数、细胞类型等各种因素的不同,使得稳态强磁场对细胞的影响在不同的研究中存在着差异.因此,本文不仅总结和分析了国内外1 T以上稳态强磁场细胞生物学效应的相关研究,包括细胞取向、增殖、微管和纺锤体等,而且对现有研究结果进行比较和概括,并对可能造成实验差异的因素进行分析,例如磁场强度和细胞类型等,从而为下一步研究稳态强磁场下的细胞生物学效应提供基础和依据.
    With the development of technology and the widespread use of high static magnetic fields (SMFs) in medical diagnosis, such as MRI (magnetic resonance imaging) in hospitals, patients have more and more chances to encounter high SMFs (higher than 1 T), which invokes increasing public concerns about human health. However, due to the experimental limitations, there are very few studies of high SMFs (above 1 T) on animals and human bodies. In contrast, cell, as a basic unit of various organisms, is the primary research target for most researches of the biological effects under the action of magnetic fields. However, due to the differences in magnetic field parameter, exposure condition and cell type, there are diverse experimental outcomes reported by individual studies in the literature. Here in this review, we summarize the results about the cellular effects under SMFs above 1 T, including changes of cell orientation, cell proliferation, microtubule and mitotic spindle orientation, DNA and cell cycle. Moreover, we also compare and analyze the factors that could cause these experimental variations, including the differential effects of high SMFs on cell type, such as cancer and non-cancer cells, as well as magnetic field intensity-induced experimental variations. The most well studied cellular effects are SMF-induced cell and polymer orientation changes, and the cellular composition is a key factor that determines the exact orientation of a cell in an SMF. For example, the normal red blood cell is aligned parallelly to the SMF direction, but the whole bull sperm is aligned perpendicularly to the SMF direction. Among the magnetic field parameters, the magnetic field intensity is especially critical. The red blood cells can only be partially aligned by 1 T SMF, but an 8 T SMF could align the red blood cells 100% along the magnetic direction. Overall, the biological research of high SMFs above 1 T, especially above 10 T, is still at an initial stage. Biological experiments in high SMFs above 20 T are especially lacking. This review could help provide some biological bases for future high SMF investigations, which is important not only for the basic understanding of the biological effects of high SMFs, but also for the applications of high SMFs in medicine, such as high field MRI.
      通信作者: 张欣, xinzhang@hmfl.ac.cn
    • 基金项目: 国家自然科学基金(批准号:U1532151)资助的课题.
      Corresponding author: Zhang Xin, xinzhang@hmfl.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. U1532151).
    [1]

    He Y Z 2013 Acta Phys. Sin. 62 084105 (in Chinese) [何永周 2013 物理学报 62 084105]

    [2]

    van der Kolk A G, Hendrikse J, Zwanenburg J J M, Visser F, Luijten P R 2013 Eur. J. Radiol. 82 708

    [3]

    Vaughan T T, Snyder C J, DelaBarre L J, Bolan P J, Tian J, Bolinger L, Adriany G, Andersen P, Strupp J, Ugurbil K 2009 Magnet. Reson. Med. 61 244

    [4]

    Budde J, Shajan G, Scheffler K, Pohmann R 2014 Neuroimage 86 592

    [5]

    Budinger T F, Bird M D 2017 Neuroimage 168 509

    [6]

    Worcester D L 1978 P. Natl. Acad. Sci. USA 75 5475

    [7]

    Pauling L 1979 Proc. Natl. Acad. Sci. USA 76 2293

    [8]

    Bras W, Torbet J, Diakun G P, Rikken G L, Diaz J F 2014 J. Biophys. 2014 985082

    [9]

    Albuquerque W W, Costa R M, de Fernandes T S, Porto A L 2016 Prog. Biophys. Mol. Biol. 121 16

    [10]

    Zablotskii V, Polyakova T, Lunov O, Dejneka A 2016 Sci. Rep. 6 37407

    [11]

    Iwasaka M, Miyakoshi J, Ueno S 2003 In. Vitro. Cell. Dev-An 39 120

    [12]

    Umeno A, Kotani H, Iwasaka M, Ueno S 2001 IEEE T. Magn. 37 2909

    [13]

    Zhang L, Wang J H, Wang H L, Wang W C, Li Z Y, Liu J J, Yang X X, Ji X M, Luo Y, Hu C, Hou Y B, He Q Q, Fang J, Wang J F, Liu Q S, Li G H, Lu Q Y, Zhang X 2016 Oncotarget 7 41527

    [14]

    Sakurai H, Okuno K, Kubo A, Nakamura K, Shoda M 1999 Bioelectroch. Bioener. 49 57

    [15]

    Hsieh C H, Lee M C, Tsai-Wu J J, Chen M H, Lee H S, Chiang H, Wu C H H, Jiang C C 2008 Osteoarthr. Cartilage. 16 343

    [16]

    Ghibelli L, Cerella C, Cordisco S, Clavarino G, Marazzi S, De Nicola M, Nuccitelli S, D'Alessio M, Magrini A, Bergamaschi A, Guerrisi V, Porfiri L M 2006 Apoptosis 11 359

    [17]

    Higashi T, Yamagishi A, Takeuchi T, Kawaguchi N, Sagawa S, Onishi S, Date M 1993 Blood 82 1328

    [18]

    Zhang X, Yarema K, Xu A 2017 Biological Effects of Static Magnetic Fields (Singapore: Springer) p94

    [19]

    Higashi T, Yamagishi A, Takeuchi T, Date M 1995 Bioelectroch. Bioener. 36 101

    [20]

    Shiga T, Okazaki M, Maeda N, Seiyama A 1996 Biological Effects of Magnetic and Electromagnetic Fields (New York: Springer) p185

    [21]

    Takeuchi T, Mizuno T, Higashi T, Yamagishi A, Date M 1995 J. Magn. Magn. Mater. 140 1462

    [22]

    Kotani H, Iwasaka M, Ueno S, Curtis A 2000 J. Appl. Phys. 87 6191

    [23]

    Kotani H, Kawaguchi H, Shimoaka T, Iwasaka M, Ueno S, Ozawa H, Nakamura K, Hoshi K 2002 J. Bone. Miner. Res. 17 1814

    [24]

    Eguchi Y, Ogiue-Ikeda M, Ueno S 2003 Neurosci. Lett. 351 130

    [25]

    Eguchi Y, Ueno S 2005 IEEE T. Magn. 41 4146

    [26]

    Sakurai T, Hashimoto A, Kiyokawa T, Kikuchi K, Miyakoshi J 2012 Bioelectromagnetics 33 421

    [27]

    Emura R, Takeuchi T, Nakaoka Y, Higashi T 2003 Bioelectromagnetics 24 347

    [28]

    Hirose H, Nakahara T, Miyakoshi J 2003 Neurosci. Lett. 338 88

    [29]

    Zhang X, Yarema K, Xu A 2017 Biological Effects of Static Magnetic Fields (Singapore: Springer) pp81-122 [张欣, 雅瑞玛 K, 徐安合 著 (张磊, 刘娟娟 译) 2017 稳态磁场的生物学效应 (北京: 科学出版社)第81–122页]

    [30]

    Ogiue-Ikeda M, Ueno S 2004 IEEE T. Magn. 40 3024

    [31]

    Emura R, Ashida N, Higashi T, Takeuchi T 2001 Bioelectromagnetics 22 60

    [32]

    Raylman R R, Clavo A C, Wahl R L 1996 Bioelectromagnetics 17 358

    [33]

    Zhang L, Yang X X, Liu J J, Luo Y, Li Z Y, Ji X M, Wang W C, Zhang X 2015 Sci. Bull. 60 2120

    [34]

    Luo Y, Ji X M, Liu J J, Li Z Y, Wang W C, Chen W, Wang J F, Liu Q S, Zhang X 2016 Bioelectrochemistry 109 31

    [35]

    Short W O, Goodwill L, Taylor C W, Job C, Arthur M E, Cress A E 1992 Invest. Radiol. 27 836

    [36]

    Nakahara T, Yaguchi H, Yoshida M, Miyakoshi J 2002 Radiology 224 817

    [37]

    Gao W M, Liu Y Q, Zhou J Z, Pan H J 2005 Bioelectromagnetics 26 558

    [38]

    Reddig A, Fatahi M, Friebe B, Guttek K, Hartig R, Godenschweger F, Roggenbuck D, Ricke J, Reinhold D, Speck O 2015 PLoS One 10 e0132702

    [39]

    Iachininoto M G, Camisa V, Leone L, Pinto R, Lopresto V, Merla C, Giorda E, Carsetti R, Zaffina S, Podda M V, Teofili L, Grassi C 2016 Bioelectromagnetics 37 201

    [40]

    Vassilev P M, Dronzine R T, Vassileva M P, Georgiev G A 1982 Bioscience. Rep. 2 1025

    [41]

    Bras W, Diakun G P, Diaz J F, Maret G, Kramer H, Bordas J, Medrano F J 1998 Biophys. J. 74 1509

    [42]

    Glade N, Tabony J 2005 Biophys. Chem. 115 29

    [43]

    Denegre J M, Valles J M, Jr, Lin K, Jordan W B, Mowry K L 1998 P. Natl. Acad. Sci. USA 95 14729

    [44]

    Eguchi Y, Ueno S, Kaito C, Sekimizu K, Shiokawa K 2006 Bioelectromagnetics 27 307

    [45]

    Valles J M 2002 Biophys. J. 82 1260

    [46]

    Valles J M, Wasserman Jr S R, Schweidenback C, Edwardson J, Denegre J M, Mowry K L 2002 Exp. Cell. Res. 274 112

    [47]

    Valiron O, Peris L, Rikken G, Schweitzer A, Saoudi Y, Remy C, Job D 2005 J. Magn. Reson. Imaging 22 334

    [48]

    Zhang L, Hou Y B, Li Z Y, Ji X M, Wang Z, Wang H Z, Tian X F, Yu F Z, Yang Z Y, Pi L, Mitchison T J, Lu Q Y, Zhang X 2017 Elife 6 e22911

    [49]

    Sato K, Yamaguchi H, Miyamoto H, Kinouchi Y 1992 Biochim. Biophys. Acta 1136 231

    [50]

    Muroski M E, Morshed R A, Cheng Y, Vemulkar T, Mansell R, Han Y, Zhang L, Aboody K S, Cowburn R P, Lesniak M S 2016 PLoS One 11 e0145129

    [51]

    Cheng Y, Muroski M E, Petit D, Mansell R, Vemulkar T, Morshed R A, Han Y, Balyasnikova I V, Horbinski C M, Huang X, Zhang L, Cowburn R P, Lesniak M S 2016 J. Control Release 223 75

    [52]

    Hapuarachchige S, Kato Y, Ngen E J, Smith B, Delannoy M, Artemov D 2016 PLoS One 11 e0156294

    [53]

    Shen Y J, Cheng Y, Uyeda T Q P, Plaza G R 2017 Ann. Biomed. Eng. 45 2475

    [54]

    Son B, Kim H D, Kim M, Kim J A, Lee J, Shin H, Hwang N S, Park T H 2015 Adv. Healthc. Mater. 4 1339

    [55]

    Takashima Y, Miyakoshi J, Ikehata M, Iwasaka M, Ueno S, Koana T 2004 J. Radiat. Res. 45 393

    [56]

    Schwenzer N F, Bantleon R, Maurer B, Kehlbach R, Schraml C, Claussen C D, Rodegerdts E 2007 J. Magn. Reson. Imaging 26 1308

    [57]

    Fatahi M, Reddig A, Vijayalaxmi, Friebe B, Hartig R, Prihoda T J, Ricke J, Roggenbuck D, Reinhold D, Speck O 2016 Neuroimage 133 288

    [58]

    Schiffer I B, Schreiber W G, Graf R, Schreiber E M, Jung D, Rose D M, Hehn M, Gebhard S, Sagemuller J, Spiess H W, Oesch F, Thelen M, Hengstler J G 2003 Bioelectromagnetics 24 241

    [59]

    Zhao G P, Chen S P, Zhao Y, Zhu L Y, Huang P, Bao L Z, Wang J, Wang L, Wu L J, Wu Y J, Xu A 2010 Plasma Sci. Technol. 12 123

    [60]

    Zhang L, Ji X M, Yang X X, Zhang X 2017 Oncotarget 8 13126

    [61]

    Prina-Mello A, Farrell E, Prendergast P J, Campbell V, Coey J M D 2006 Bioelectromagnetics 27 35

    [62]

    Yang J, Zhang J, Ding C, Dong D, Shang P 2017 Biol. Trace. Elem. Res. 184 214

    [63]

    Aldinucci C, Garcia J B, Palmi M, Sgaragli G, Benocci A, Meini A, Pessina F, Rossi C, Bonechi C, Pessina G P 2003 Bioelectromagnetics 24 109

    [64]

    Hackett S, Hamzah J, Davis T M, St Pierre T G 2009 Bba-Mol. Basis. Dis. 1792 93

    [65]

    Lee J, Kim M S, Kim Y J, Choi Y J, Lee Y, Chung H 2011 Bioelectromagnetics 32 535

    [66]

    Zablotskii V, Syrovets T, Schmidt Z W, Dejneka A, Simmet T 2014 Biomaterials 35 3164

    [67]

    Zborowski M, Ostera G R, Moore L R, Milliron S, Chalmers J J, Schechter A N 2003 Biophys. J. 84 2638

    [68]

    Zablotskii V, Dejneka A, Kubinova S, Le-Roy D, Dumas-Bouchiat F, Givord D, Dempsey N M, Sykova E 2013 Plos One 8 e70416

    [69]

    Zhao G, Chen S, Wang L, Zhao Y, Wang J, Wang X, Zhang W, Wu R, Wu L, Wu Y, Xu A 2011 Bioelectromagnetics 32 94

    [70]

    Wang J, Yang G, Liu F 2015 Acta Phys. Sin. 64 058707 (in Chinese) [王璟, 杨根, 刘峰 2015 物理学报 64 058707]

    [71]

    Liu R C, Chen G, Liu L Y 2017 Physics 46 627 (in Chinese) [刘如川, 陈果, 刘雳宇 2017 物理 46 627]

  • [1]

    He Y Z 2013 Acta Phys. Sin. 62 084105 (in Chinese) [何永周 2013 物理学报 62 084105]

    [2]

    van der Kolk A G, Hendrikse J, Zwanenburg J J M, Visser F, Luijten P R 2013 Eur. J. Radiol. 82 708

    [3]

    Vaughan T T, Snyder C J, DelaBarre L J, Bolan P J, Tian J, Bolinger L, Adriany G, Andersen P, Strupp J, Ugurbil K 2009 Magnet. Reson. Med. 61 244

    [4]

    Budde J, Shajan G, Scheffler K, Pohmann R 2014 Neuroimage 86 592

    [5]

    Budinger T F, Bird M D 2017 Neuroimage 168 509

    [6]

    Worcester D L 1978 P. Natl. Acad. Sci. USA 75 5475

    [7]

    Pauling L 1979 Proc. Natl. Acad. Sci. USA 76 2293

    [8]

    Bras W, Torbet J, Diakun G P, Rikken G L, Diaz J F 2014 J. Biophys. 2014 985082

    [9]

    Albuquerque W W, Costa R M, de Fernandes T S, Porto A L 2016 Prog. Biophys. Mol. Biol. 121 16

    [10]

    Zablotskii V, Polyakova T, Lunov O, Dejneka A 2016 Sci. Rep. 6 37407

    [11]

    Iwasaka M, Miyakoshi J, Ueno S 2003 In. Vitro. Cell. Dev-An 39 120

    [12]

    Umeno A, Kotani H, Iwasaka M, Ueno S 2001 IEEE T. Magn. 37 2909

    [13]

    Zhang L, Wang J H, Wang H L, Wang W C, Li Z Y, Liu J J, Yang X X, Ji X M, Luo Y, Hu C, Hou Y B, He Q Q, Fang J, Wang J F, Liu Q S, Li G H, Lu Q Y, Zhang X 2016 Oncotarget 7 41527

    [14]

    Sakurai H, Okuno K, Kubo A, Nakamura K, Shoda M 1999 Bioelectroch. Bioener. 49 57

    [15]

    Hsieh C H, Lee M C, Tsai-Wu J J, Chen M H, Lee H S, Chiang H, Wu C H H, Jiang C C 2008 Osteoarthr. Cartilage. 16 343

    [16]

    Ghibelli L, Cerella C, Cordisco S, Clavarino G, Marazzi S, De Nicola M, Nuccitelli S, D'Alessio M, Magrini A, Bergamaschi A, Guerrisi V, Porfiri L M 2006 Apoptosis 11 359

    [17]

    Higashi T, Yamagishi A, Takeuchi T, Kawaguchi N, Sagawa S, Onishi S, Date M 1993 Blood 82 1328

    [18]

    Zhang X, Yarema K, Xu A 2017 Biological Effects of Static Magnetic Fields (Singapore: Springer) p94

    [19]

    Higashi T, Yamagishi A, Takeuchi T, Date M 1995 Bioelectroch. Bioener. 36 101

    [20]

    Shiga T, Okazaki M, Maeda N, Seiyama A 1996 Biological Effects of Magnetic and Electromagnetic Fields (New York: Springer) p185

    [21]

    Takeuchi T, Mizuno T, Higashi T, Yamagishi A, Date M 1995 J. Magn. Magn. Mater. 140 1462

    [22]

    Kotani H, Iwasaka M, Ueno S, Curtis A 2000 J. Appl. Phys. 87 6191

    [23]

    Kotani H, Kawaguchi H, Shimoaka T, Iwasaka M, Ueno S, Ozawa H, Nakamura K, Hoshi K 2002 J. Bone. Miner. Res. 17 1814

    [24]

    Eguchi Y, Ogiue-Ikeda M, Ueno S 2003 Neurosci. Lett. 351 130

    [25]

    Eguchi Y, Ueno S 2005 IEEE T. Magn. 41 4146

    [26]

    Sakurai T, Hashimoto A, Kiyokawa T, Kikuchi K, Miyakoshi J 2012 Bioelectromagnetics 33 421

    [27]

    Emura R, Takeuchi T, Nakaoka Y, Higashi T 2003 Bioelectromagnetics 24 347

    [28]

    Hirose H, Nakahara T, Miyakoshi J 2003 Neurosci. Lett. 338 88

    [29]

    Zhang X, Yarema K, Xu A 2017 Biological Effects of Static Magnetic Fields (Singapore: Springer) pp81-122 [张欣, 雅瑞玛 K, 徐安合 著 (张磊, 刘娟娟 译) 2017 稳态磁场的生物学效应 (北京: 科学出版社)第81–122页]

    [30]

    Ogiue-Ikeda M, Ueno S 2004 IEEE T. Magn. 40 3024

    [31]

    Emura R, Ashida N, Higashi T, Takeuchi T 2001 Bioelectromagnetics 22 60

    [32]

    Raylman R R, Clavo A C, Wahl R L 1996 Bioelectromagnetics 17 358

    [33]

    Zhang L, Yang X X, Liu J J, Luo Y, Li Z Y, Ji X M, Wang W C, Zhang X 2015 Sci. Bull. 60 2120

    [34]

    Luo Y, Ji X M, Liu J J, Li Z Y, Wang W C, Chen W, Wang J F, Liu Q S, Zhang X 2016 Bioelectrochemistry 109 31

    [35]

    Short W O, Goodwill L, Taylor C W, Job C, Arthur M E, Cress A E 1992 Invest. Radiol. 27 836

    [36]

    Nakahara T, Yaguchi H, Yoshida M, Miyakoshi J 2002 Radiology 224 817

    [37]

    Gao W M, Liu Y Q, Zhou J Z, Pan H J 2005 Bioelectromagnetics 26 558

    [38]

    Reddig A, Fatahi M, Friebe B, Guttek K, Hartig R, Godenschweger F, Roggenbuck D, Ricke J, Reinhold D, Speck O 2015 PLoS One 10 e0132702

    [39]

    Iachininoto M G, Camisa V, Leone L, Pinto R, Lopresto V, Merla C, Giorda E, Carsetti R, Zaffina S, Podda M V, Teofili L, Grassi C 2016 Bioelectromagnetics 37 201

    [40]

    Vassilev P M, Dronzine R T, Vassileva M P, Georgiev G A 1982 Bioscience. Rep. 2 1025

    [41]

    Bras W, Diakun G P, Diaz J F, Maret G, Kramer H, Bordas J, Medrano F J 1998 Biophys. J. 74 1509

    [42]

    Glade N, Tabony J 2005 Biophys. Chem. 115 29

    [43]

    Denegre J M, Valles J M, Jr, Lin K, Jordan W B, Mowry K L 1998 P. Natl. Acad. Sci. USA 95 14729

    [44]

    Eguchi Y, Ueno S, Kaito C, Sekimizu K, Shiokawa K 2006 Bioelectromagnetics 27 307

    [45]

    Valles J M 2002 Biophys. J. 82 1260

    [46]

    Valles J M, Wasserman Jr S R, Schweidenback C, Edwardson J, Denegre J M, Mowry K L 2002 Exp. Cell. Res. 274 112

    [47]

    Valiron O, Peris L, Rikken G, Schweitzer A, Saoudi Y, Remy C, Job D 2005 J. Magn. Reson. Imaging 22 334

    [48]

    Zhang L, Hou Y B, Li Z Y, Ji X M, Wang Z, Wang H Z, Tian X F, Yu F Z, Yang Z Y, Pi L, Mitchison T J, Lu Q Y, Zhang X 2017 Elife 6 e22911

    [49]

    Sato K, Yamaguchi H, Miyamoto H, Kinouchi Y 1992 Biochim. Biophys. Acta 1136 231

    [50]

    Muroski M E, Morshed R A, Cheng Y, Vemulkar T, Mansell R, Han Y, Zhang L, Aboody K S, Cowburn R P, Lesniak M S 2016 PLoS One 11 e0145129

    [51]

    Cheng Y, Muroski M E, Petit D, Mansell R, Vemulkar T, Morshed R A, Han Y, Balyasnikova I V, Horbinski C M, Huang X, Zhang L, Cowburn R P, Lesniak M S 2016 J. Control Release 223 75

    [52]

    Hapuarachchige S, Kato Y, Ngen E J, Smith B, Delannoy M, Artemov D 2016 PLoS One 11 e0156294

    [53]

    Shen Y J, Cheng Y, Uyeda T Q P, Plaza G R 2017 Ann. Biomed. Eng. 45 2475

    [54]

    Son B, Kim H D, Kim M, Kim J A, Lee J, Shin H, Hwang N S, Park T H 2015 Adv. Healthc. Mater. 4 1339

    [55]

    Takashima Y, Miyakoshi J, Ikehata M, Iwasaka M, Ueno S, Koana T 2004 J. Radiat. Res. 45 393

    [56]

    Schwenzer N F, Bantleon R, Maurer B, Kehlbach R, Schraml C, Claussen C D, Rodegerdts E 2007 J. Magn. Reson. Imaging 26 1308

    [57]

    Fatahi M, Reddig A, Vijayalaxmi, Friebe B, Hartig R, Prihoda T J, Ricke J, Roggenbuck D, Reinhold D, Speck O 2016 Neuroimage 133 288

    [58]

    Schiffer I B, Schreiber W G, Graf R, Schreiber E M, Jung D, Rose D M, Hehn M, Gebhard S, Sagemuller J, Spiess H W, Oesch F, Thelen M, Hengstler J G 2003 Bioelectromagnetics 24 241

    [59]

    Zhao G P, Chen S P, Zhao Y, Zhu L Y, Huang P, Bao L Z, Wang J, Wang L, Wu L J, Wu Y J, Xu A 2010 Plasma Sci. Technol. 12 123

    [60]

    Zhang L, Ji X M, Yang X X, Zhang X 2017 Oncotarget 8 13126

    [61]

    Prina-Mello A, Farrell E, Prendergast P J, Campbell V, Coey J M D 2006 Bioelectromagnetics 27 35

    [62]

    Yang J, Zhang J, Ding C, Dong D, Shang P 2017 Biol. Trace. Elem. Res. 184 214

    [63]

    Aldinucci C, Garcia J B, Palmi M, Sgaragli G, Benocci A, Meini A, Pessina F, Rossi C, Bonechi C, Pessina G P 2003 Bioelectromagnetics 24 109

    [64]

    Hackett S, Hamzah J, Davis T M, St Pierre T G 2009 Bba-Mol. Basis. Dis. 1792 93

    [65]

    Lee J, Kim M S, Kim Y J, Choi Y J, Lee Y, Chung H 2011 Bioelectromagnetics 32 535

    [66]

    Zablotskii V, Syrovets T, Schmidt Z W, Dejneka A, Simmet T 2014 Biomaterials 35 3164

    [67]

    Zborowski M, Ostera G R, Moore L R, Milliron S, Chalmers J J, Schechter A N 2003 Biophys. J. 84 2638

    [68]

    Zablotskii V, Dejneka A, Kubinova S, Le-Roy D, Dumas-Bouchiat F, Givord D, Dempsey N M, Sykova E 2013 Plos One 8 e70416

    [69]

    Zhao G, Chen S, Wang L, Zhao Y, Wang J, Wang X, Zhang W, Wu R, Wu L, Wu Y, Xu A 2011 Bioelectromagnetics 32 94

    [70]

    Wang J, Yang G, Liu F 2015 Acta Phys. Sin. 64 058707 (in Chinese) [王璟, 杨根, 刘峰 2015 物理学报 64 058707]

    [71]

    Liu R C, Chen G, Liu L Y 2017 Physics 46 627 (in Chinese) [刘如川, 陈果, 刘雳宇 2017 物理 46 627]

  • [1] 陈惠燕, 李洛非, 王炜, 曹毅, 雷海. 力信号对心肌细胞跳动的调控. 物理学报, 2024, 73(8): 088701. doi: 10.7498/aps.73.20240095
    [2] 姚佳烽, 万建芬, 杨璐, 刘凯, 陈柏, 吴洪涛. 基于生物阻抗谱的细胞电学特性研究. 物理学报, 2020, 69(16): 163301. doi: 10.7498/aps.69.20200601
    [3] 张益溢, 吴佳琛, 郝然, 金尚忠, 曹良才. 基于数字全息的血红细胞显微成像技术. 物理学报, 2020, 69(16): 164201. doi: 10.7498/aps.69.20200357
    [4] 李翔, 刘锋, 帅建伟. 癌细胞信号网络动力学研究. 物理学报, 2016, 65(17): 178704. doi: 10.7498/aps.65.178704
    [5] 孙波. 胶原纤维网络和癌细胞的力学微环境. 物理学报, 2015, 64(5): 058201. doi: 10.7498/aps.64.058201
    [6] 莫润阳, 林书玉, 王成会. H-22细胞声孔效应的应力阈值. 物理学报, 2011, 60(11): 114306. doi: 10.7498/aps.60.114306
    [7] 杨建华, 刘先斌. 色交叉关联噪声作用下癌细胞增长系统的平均首通时间. 物理学报, 2010, 59(6): 3727-3732. doi: 10.7498/aps.59.3727
    [8] 陈丹妮, 刘磊, 于斌, 牛憨笨. HeLa细胞突起中微丝束的纳米分辨荧光成像. 物理学报, 2010, 59(10): 6948-6954. doi: 10.7498/aps.59.6948
    [9] 李芹, 蔡理, 冯朝文. SET-MOS混合结构的细胞神经网络及其应用. 物理学报, 2009, 58(6): 4183-4188. doi: 10.7498/aps.58.4183
    [10] 张春兵, 邱媛媛, 郗晓宇, 章东. 超声增强脂质体与细胞相互作用的研究. 物理学报, 2009, 58(6): 3996-4001. doi: 10.7498/aps.58.3996
    [11] 冯朝文, 蔡 理, 李 芹. 基于单电子器件的细胞神经网络实现及应用研究. 物理学报, 2008, 57(4): 2462-2467. doi: 10.7498/aps.57.2462
    [12] 王参军, 魏 群, 郑宝兵, 梅冬成. 色噪声驱动的肿瘤细胞增长系统的瞬态性质:平均首通时间. 物理学报, 2008, 57(3): 1375-1380. doi: 10.7498/aps.57.1375
    [13] 白永强, 唐爱辉, 王世强, 朱 星. 单个心肌细胞内钙波的微观动力学研究. 物理学报, 2007, 56(6): 3607-3612. doi: 10.7498/aps.56.3607
    [14] 申传胜, 张季谦, 陈含爽. 细胞丛状化分布对二维耦合体系尺度选择效应的影响. 物理学报, 2007, 56(11): 6315-6320. doi: 10.7498/aps.56.6315
    [15] 吴忠强, 谭拂晓, 王绍仙. 基于无源化的细胞神经网络超混沌系统同步. 物理学报, 2006, 55(4): 1651-1658. doi: 10.7498/aps.55.1651
    [16] 谢 勇, 徐健学, 康艳梅, 胡三觉, 段玉斌. 可兴奋性细胞混沌放电区间的识别机理. 物理学报, 2003, 52(5): 1112-1120. doi: 10.7498/aps.52.1112
    [17] 蔡 理, 马西奎, 王 森. 量子细胞神经网络的超混沌特性研究. 物理学报, 2003, 52(12): 3002-3006. doi: 10.7498/aps.52.3002
    [18] 王宏霞, 何 晨. 细胞神经网络的动力学行为. 物理学报, 2003, 52(10): 2409-2414. doi: 10.7498/aps.52.2409
    [19] 王传奎, 高铁军, 薛成山. 耦合量子细胞的非线性特性. 物理学报, 2000, 49(10): 2033-2036. doi: 10.7498/aps.49.2033
    [20] 陈陆君, 梁昌洪. 双参量孤子细胞自动机. 物理学报, 1993, 42(12): 1894-1900. doi: 10.7498/aps.42.1894
计量
  • 文章访问数:  8350
  • PDF下载量:  284
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-02
  • 修回日期:  2018-04-08
  • 刊出日期:  2019-07-20

/

返回文章
返回