搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮化铀热中子截面的第一性原理计算

王立鹏 江新标 吴宏春 樊慧庆

引用本文:
Citation:

氮化铀热中子截面的第一性原理计算

王立鹏, 江新标, 吴宏春, 樊慧庆

Ab initio calculation of the thermal neutron scattering cross sections of uranium mononitride

Wang Li-Peng, Jiang Xin-Biao, Wu Hong-Chun, Fan Hui-Qing
PDF
导出引用
  • 氮化铀(UN)因其较好的热物性和耐事故容错性成为先进动力堆的候选燃料,但目前热能区缺少可靠的UN热中子截面数据,这对于热中子反应堆物理计算是很不利的.本文基于量子力学的第一性原理,利用VASP/PHONON软件模拟计算了UN的声子态密度,以此为积分得到UN的定容比热容,并基于新制作的声子态密度,采用核截面处理程序NJOY/LEAPR,利用热中子散射理论,得到UN的S(,)数据,进而研究UN的热中子散射截面,并与传统压水堆的二氧化铀(UO2)进行对比.结果表明:优化的晶格参数与数据库符合较好,UN声子态密度的声子项和光子项较UO2的分隔更加明显,定容比热容计算结果与实验值一致,基于该声子态密度计算得到的UN中238U的非弹性散射和弹性散射截面比相同温度下UO2中238U小,UN中N仅考虑了非相干散射部分,随着温度升高,UN弹性散射截面变小,非弹性散射变大,并在高能段趋于自由核散射截面.本文的研究结果填补了UN热中子截面数据的缺失,为下一步系统研究UN燃料在轻水堆中的中子学性能奠定了基础.
    Nuclear design and neutronic analysis of thermal neutron reactor need high reliable thermal neutron cross sections. Uranium mononitride (UN) is a candidate fuel material for advanced power reactor with its better thermodynamics and accident tolerance. However, in thermal neutron region, reliable thermal neutron scattering cross sections are lacked for UN, which is disadvantageous to reactor physics simulations. The scattering law of the UN fuel material may impact the thermal neutron spectrum and criticality of the reactor systems. Neutron cross sections in thermal range are correlated with energy, temperature, physical and chemical properties of the scattering medium, reflecting the phonon spectra of material itself. In this paper, based on the ab initio method of quantum mechanics, phonon density of states in UN are calculated by VASP/PHONON code, and used for integral to obtain UN heat capacity at a constant volume. Adopting this new phonon density of states, NJOY/LEAPR code is used to generate S (, ) data by thermal neutron scattering theory and NJOY/THERMR utilizes these data to produce thermal scattering matrix in order to investigate thermal kernel effect of UN. Subsequently, thermal neutron scattering cross sections of UN are generated with NJOY code system. Comparison with uranium dioxide (UO2) in the traditional PWR is done. Results indicate that optimized lattice parameter are in good agreement with the database; the optical modes are well separated from the acoustic modes compared with UO2; heat capacity at a constant volume is consistent with experimental value; the inelastic and elastic cross sections of 238U in UN are lower than those of 238U in UO2. N in UN only deals with incoherent part in elastic cross sections. As the temperature increases, elastic cross sections of UN decrease while inelastic ones increase, and cross sections approach to free atom cross section at high energies. Considering the limitations of 14N, the scattering law and inelastic scattering cross sections are also under investigation using 15N in UN compound. This paper's conclusion fulfill the vacancy of thermal neutron scattering cross sections of UN, which laid a foundation for systematic study on the neutronics properties of UN fuel in the light water reactors as well as for the design of new neutron moderators and neutron filer.
      通信作者: 王立鹏, wang0214@126.com
      Corresponding author: Wang Li-Peng, wang0214@126.com
    [1]

    [1] Choi J, Ebbinghaus B, Meier T 2006 UCRL-TR-218931 (Lawrence Livermore National Laboratory)
    [2] Zakova J, Wallenius J 2012 Ann. Nucl. Energy 47 182
    [3] Hawari A I 2014 Nucl. Data Sheets 118 172
    [4] Wang L P, Jiang X B, Zhao Z M, Chen L X 2013 Nucl. Eng. Des. 262 365
    [5] Wang L P, Jiang X B, Zhao Z M, Chen L X 2015 Proceedings of the 23 th International Conference on Nuclear Engineering Chiba, Japan, May 17-21, 2015 ICONE23-TP046
    [6] X-5 Monte Carlo Team 2003 LA-03-1987-M (Los Alamos National Laboratory)
    [7] Brown D A, Chadwick M B, Capote R, et al. 2018 Nucl. Data Sheets 148 1
    [8] Zhu Y W, Hawari A I 2015 Proceedings of International Conference on Nuclear Criticality Safety Charlotte, North Carolina, September 13-17, 2015 p874
    [9] Zhu Y W, Hawari A I 2018 Proceedings of the PHYSOR 2018 Cancun, Mexico, April 22-26, 2018
    [10] Macfarlane R E, Muir D W 1994 LA-12470-M (Los Alamos National Laboratory)
    [11] Macfarlane R E, Muir D W 2012 LA-UR-12-27079 (Los Alamos National Laboratory)
    [12] Bell G I, Gasstone S (translated by Qian Li) 1970 Nuclear Reactor Theory (Beijing: Science Press) pp235-243 (in Chinese)[贝尔 G I, 格拉斯 S 著 (千里译) 1970 核反应堆理论 (北京: 原子能出版社)第235–243页]
    [13] Xie Z S, Yin B H 2004 Nuclear Reactor Physics Analysis (Beijing: Atom Press) p120 (in Chinese)[谢仲生, 尹邦华 2004 核反应堆物理分析 (北京: 原子能出版社) 第120页]
    [14] Mclane V 2009 BNL-NCS-44945-01/03-Rev (Brookhaven National Laboratory)
    [15] Mattes M, Keinert J 2005 INDC(NDS)-0470 (International Nuclear Data Committee)
    [16] MedeA_221 2017 Materials Design Inc., Angel Fire, NM, USA.
    [17] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
    [18] Sears V F 1992 International Tables for Crystallography (Vol. C) Mathematical, Physical and Chemical Tables (Dordrecht: Kluwer Academic Publishers)
    [19] Koppel J U, Houston D H 1968 GA-8774 Revised (U. S. Atomic Energy Commission)
    [20] Kurosaki K, Yano K, Yamada K 2000 J. Alloys Compd. 297 1
    [21] Hayes S L, Thomas J K, Peddicord K L 1990 J. Nucl. Mater. 171 262

  • [1]

    [1] Choi J, Ebbinghaus B, Meier T 2006 UCRL-TR-218931 (Lawrence Livermore National Laboratory)
    [2] Zakova J, Wallenius J 2012 Ann. Nucl. Energy 47 182
    [3] Hawari A I 2014 Nucl. Data Sheets 118 172
    [4] Wang L P, Jiang X B, Zhao Z M, Chen L X 2013 Nucl. Eng. Des. 262 365
    [5] Wang L P, Jiang X B, Zhao Z M, Chen L X 2015 Proceedings of the 23 th International Conference on Nuclear Engineering Chiba, Japan, May 17-21, 2015 ICONE23-TP046
    [6] X-5 Monte Carlo Team 2003 LA-03-1987-M (Los Alamos National Laboratory)
    [7] Brown D A, Chadwick M B, Capote R, et al. 2018 Nucl. Data Sheets 148 1
    [8] Zhu Y W, Hawari A I 2015 Proceedings of International Conference on Nuclear Criticality Safety Charlotte, North Carolina, September 13-17, 2015 p874
    [9] Zhu Y W, Hawari A I 2018 Proceedings of the PHYSOR 2018 Cancun, Mexico, April 22-26, 2018
    [10] Macfarlane R E, Muir D W 1994 LA-12470-M (Los Alamos National Laboratory)
    [11] Macfarlane R E, Muir D W 2012 LA-UR-12-27079 (Los Alamos National Laboratory)
    [12] Bell G I, Gasstone S (translated by Qian Li) 1970 Nuclear Reactor Theory (Beijing: Science Press) pp235-243 (in Chinese)[贝尔 G I, 格拉斯 S 著 (千里译) 1970 核反应堆理论 (北京: 原子能出版社)第235–243页]
    [13] Xie Z S, Yin B H 2004 Nuclear Reactor Physics Analysis (Beijing: Atom Press) p120 (in Chinese)[谢仲生, 尹邦华 2004 核反应堆物理分析 (北京: 原子能出版社) 第120页]
    [14] Mclane V 2009 BNL-NCS-44945-01/03-Rev (Brookhaven National Laboratory)
    [15] Mattes M, Keinert J 2005 INDC(NDS)-0470 (International Nuclear Data Committee)
    [16] MedeA_221 2017 Materials Design Inc., Angel Fire, NM, USA.
    [17] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
    [18] Sears V F 1992 International Tables for Crystallography (Vol. C) Mathematical, Physical and Chemical Tables (Dordrecht: Kluwer Academic Publishers)
    [19] Koppel J U, Houston D H 1968 GA-8774 Revised (U. S. Atomic Energy Commission)
    [20] Kurosaki K, Yano K, Yamada K 2000 J. Alloys Compd. 297 1
    [21] Hayes S L, Thomas J K, Peddicord K L 1990 J. Nucl. Mater. 171 262

  • [1] 莫秋燕, 张颂, 荆涛, 张泓筠, 李先绪, 吴家隐. CuSe表面修饰的第一性原理研究. 物理学报, 2023, 72(12): 127301. doi: 10.7498/aps.72.20230093
    [2] 侯璐, 童鑫, 欧阳钢. 一维carbyne链原子键性质应变调控的第一性原理研究. 物理学报, 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [3] 高云亮, 朱芫江, 李进平. Al辐照损伤初期的第一性原理研究. 物理学报, 2017, 66(5): 057104. doi: 10.7498/aps.66.057104
    [4] 严顺涛, 姜振益. Cu掺杂对TiNi合金马氏体相变路径影响的第一性原理研究. 物理学报, 2017, 66(13): 130501. doi: 10.7498/aps.66.130501
    [5] 朱玥, 李永成, 王福合. Li掺杂对MgH2(001)表面H2分子扩散释放影响的第一性原理研究. 物理学报, 2016, 65(5): 056801. doi: 10.7498/aps.65.056801
    [6] 蒋文灿, 陈华, 张伟斌. TATB晶体声子谱及比热容的第一性原理研究. 物理学报, 2016, 65(12): 126301. doi: 10.7498/aps.65.126301
    [7] 李细莲, 刘刚, 杜桃园, 赵晶, 吴木生, 欧阳楚英, 徐波. 应力对硅烯上锂吸附的影响. 物理学报, 2014, 63(21): 217101. doi: 10.7498/aps.63.217101
    [8] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算. 物理学报, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [9] 金宝, 蔡军, 陈义学. 放射性核素铀在针铁矿中的占位研究. 物理学报, 2013, 62(8): 087101. doi: 10.7498/aps.62.087101
    [10] 李宇波, 王骁, 戴庭舸, 袁广中, 杨杭生. 第一性原理计算研究立方氮化硼空位的电学和光学特性. 物理学报, 2013, 62(7): 074201. doi: 10.7498/aps.62.074201
    [11] 周大伟, 卢成, 李根全, 宋金璠, 宋玉玲, 包刚. 高压下金属Ba的结构稳定性以及热动力学的第一原理研究. 物理学报, 2012, 61(14): 146301. doi: 10.7498/aps.61.146301
    [12] 孙伟峰, 李美成, 赵连城. Ga和Sb纳米线声子结构和电子-声子相互作用的第一性原理研究. 物理学报, 2010, 59(10): 7291-7297. doi: 10.7498/aps.59.7291
    [13] 许红斌, 王渊旭. 过渡金属Tc及其氮化物TcN,TcN2,TcN3与TcN4低压缩性的第一性原理计算研究. 物理学报, 2009, 58(8): 5645-5652. doi: 10.7498/aps.58.5645
    [14] 朱建新, 李永华, 孟繁玲, 刘常升, 郑伟涛, 王煜明. NiTi合金的第一性原理研究. 物理学报, 2008, 57(11): 7204-7209. doi: 10.7498/aps.57.7204
    [15] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究. 物理学报, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
    [16] 丁少锋, 范广涵, 李述体, 肖 冰. 氮化铟p型掺杂的第一性原理研究. 物理学报, 2007, 56(7): 4062-4067. doi: 10.7498/aps.56.4062
    [17] 姚红英, 顾 晓, 季 敏, 张笛儿, 龚新高. SiO2-羟基表面上金属原子的第一性原理研究. 物理学报, 2006, 55(11): 6042-6046. doi: 10.7498/aps.55.6042
    [18] 潘志军, 张澜庭, 吴建生. CoSi电子结构第一性原理研究. 物理学报, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
    [19] 肖 杨, 颜晓红, 曹觉先, 丁建文. 单壁纳米碳管的声子谱研究. 物理学报, 2003, 52(7): 1720-1725. doi: 10.7498/aps.52.1720
    [20] 李 泌. 铁的原子间相互作用及声子谱. 物理学报, 2000, 49(9): 1692-1695. doi: 10.7498/aps.49.1692
计量
  • 文章访问数:  7868
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-26
  • 修回日期:  2018-07-30
  • 刊出日期:  2019-10-20

/

返回文章
返回