搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多阶有序钙钛矿多铁性材料的高压制备与物性

周龙 王潇 张慧敏 申旭东 董帅 龙有文

引用本文:
Citation:

多阶有序钙钛矿多铁性材料的高压制备与物性

周龙, 王潇, 张慧敏, 申旭东, 董帅, 龙有文

High pressure synthesis and physical properties of multiferroic materials with multiply-ordered perovskite structure

Zhou Long, Wang Xiao, Zhang Hui-Min, Shen Xu-Dong, Dong Shuai, Long You-Wen
PDF
导出引用
  • 钙钛矿是研究磁电多铁性最重要的材料体系之一.由于高的结构对称性,在以往的立方钙钛矿晶格中尚未发现多铁现象.另外,现有的单相多铁性材料很难兼容大电极化和强磁电耦合,严重制约多铁性材料的潜在应用.本文简单综述了利用高压高温条件制备的两个多阶有序钙钛矿氧化物的磁电多铁性质.在具有立方晶格的多阶钙钛矿LaMn3Cr4O12中,观察到自旋诱导的铁电极化,表明该材料是第一个被发现的具有多铁性的立方钙钛矿体系.在另一个多阶有序钙钛矿BiMn3Cr4O12中,随温度降低该材料依次经历了I类多铁相和Ⅱ类多铁相.正因为这两类不同多铁相的同时出现,BiMn3Cr4O12同时展示了大的电极化强度和强的磁电耦合效应,并且通过不同的电场调控可实现四重铁电极化态,为开发多功能自旋电子学器件与多态存储提供了先进的材料基础.
    Perovskite is one of the most important material systems for magnetoelectric multiferroic study. However, multiferroic is not expected to occur in a cubic perovskite on account of the highly symmetric crystal structure. Besides, magnetoelectric multiferroics with large ferroelectric polarization and strong magnetoelectric coupling have not been found to occur simultaneously in a single-phase multiferroic material discovered so far, challenging to the potential applications of this kind of material. Here we briefly review two multiferroic materials with multiply-ordered perovskite structure synthesized under high pressure and high temperature conditions. In the cubic perovskite LaMn3Cr4O12, we observed spin-induced ferroelectric polarization, providing the first example where ferroelectric takes place in a cubic perovskite material. In another multiply-ordered provskite BiMn3Cr4O12, type-I and type-Ⅱ multiferroic phases successively developed when cooled. It provides a rare example where two different types of multiferroic phases occur subsequently so that both large polarization and strong magnetoelectric effect are achieved in a single-phase material. In addition, since double ferroelectric phases take place in BiMn3Cr4O12, one can obtain four different polarization states by adopting different poling procedures, thus opening up a new way for generating multifunctional spintronics and multistate storage devices.
      通信作者: 龙有文, ywlong@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11574378,51772324)、国家重点基础研究发展计划(批准号:2014CB921500)、国家重点研发计划(批准号:2018YFA0305700)和中国科学院项目(批准号:YZ201555,QYZDBSSW-SLH013,XDB07030300,GJHZ1773)资助的课题.
      Corresponding author: Long You-Wen, ywlong@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574378, 51772324), the National Basic Research Program of China (Grant No. 2014CB921500), the National Key RD Program of China (Grant No. 2018YFA0305700), and the Chinese Academy of Sciences (Grant Nos. YZ201555, QYZDBSSW-SLH013, XDB07030300, GJHZ1773).
    [1]

    Schmid H 1994 Ferroelectrics 162 317

    [2]

    Spaldin N A, Fiebig M 2005 Science 309 391

    [3]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [4]

    Cheong S W, Mostovoy M 2007 Nat. Mater. 6 13

    [5]

    Ramesh R, Spaldin N A 2007 Nat. Mater. 6 21

    [6]

    Ma J, Hu J M, Li Z, Nan C W 2011 Adv. Mater. 23 1062

    [7]

    Tokura Y, Seki S, Nagaosa N 2014 Rep. Prog. Phys. 77 076501

    [8]

    Dong S, Liu J M, Cheong S W, Ren Z F 2015 Adv. Phys. 64 519

    [9]

    Yin Y Y, Wang X, Deng H S, Zhou L, Dai J H, Long Y W 2017 Acta Phys. Sin. 66 030201 (in Chinese) [殷云宇, 王潇, 邓宏芟, 周龙, 戴建洪, 龙有文 2017 物理学报 66 030201]

    [10]

    Long Y W 2016 Chin. Phys. B 25 078108

    [11]

    Zhao Q, Yin Y Y, Dai J H, Shen X, Hu Z, Yang J Y, Wang Q T, Yu R C, Li X D, Long Y W 2016 Chin. Phys. B 25 020701

    [12]

    Khomskii D 2009 Physics 2 20

    [13]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719

    [14]

    Popov Y F, Kadomtseva A M, Krotov S S, Belov D V, Vorobev G P, Makhov P N, Zvezdin A K 2001 Low Temp. Phys. 27 478

    [15]

    Sergienko I A, Sen C, Dagotto E 2006 Phys. Rev. Lett. 97 227204

    [16]

    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y 2003 Nature 426 55

    [17]

    Tokura Y, Seki Y 2010 Adv. Mater. 22 1554

    [18]

    Wang X, Chai Y S, Zhou L, Cao H B, Cruz C, Yang J Y, Dai J H, Yin Y Y, Yuan Z, Zhang S J, Yu R Z, Azuma M, Shimakawa Y, Zhang H M, Dong S, Sun Y, Jin C Q, Long Y W 2015 Phys. Rev. Lett. 115 087601

    [19]

    Feng J S, Xiang H J 2016 Phys. Rev. B 93 174416

    [20]

    Teague J R, Gerson R, James W J 1970 Solid State Commun. 8 1073

    [21]

    Zakharov Y N, Raevski I P, Eknadiosians E I, Pinskaya A N, Pustovaya L E, Borodin V Z 2000 Ferroelectrics 247 47

    [22]

    Zhou L, Dai J, Chai Y, Zhang H, Dong S, Cao H, Calder S, Yin Y, Wang X, Shen X, Liu Z, Saito T, Shimakawa Y, Hojo H, Ikuhara Y, Azuma M, Hu Z, Sun Y, Jin C Q, Long Y W 2017 Adv. Mater. 29 1703435

    [23]

    Larson A C, von Dreele R B 1994 General Structure Analysis System (GSAS) Report No. LAUR 86-748 (Los Alamos National Laboratory)

    [24]

    Brown I D, Altermatt D 1985 Acta Crystallogr. B41 244

    [25]

    Brese N E, OKeeffe M 1991 Acta Crystallogr. B47 192

    [26]

    Long Y W, Saito T, Mizumaki M, Agui A, Shimakawa Y 2009 J. Am. Chem. Soc. 131 16244

    [27]

    Scott J F, Kammerdiner L, Parris M, Traynor S, Ottenbacher V, Shavabkeh A, Oliver W F 1988 J. Appl. Phys. 64 787

    [28]

    Chai Y S, Oh Y S, Wang L J, Manivannan N, Feng S M, Yang Y S, Yan L Q, Jin C Q, Kim K H 2012 Phys. Rev. B 85 184406

    [29]

    Chapon L C, Blake G R, Gutmann M J, Park S, Hur N, Radaelli P G, Cheong S W 2004 Phys. Rev. Lett. 93 177402

    [30]

    Guo Y Y, Wang Y L, Liu J M, Wei T 2014 J. Appl. Phys. 116 063905

    [31]

    Hur N, Park S, Sharma P A, Ahn J S, Guha S, Cheong S W 2004 Nature 429 392

    [32]

    van Aken B, Palstra T T M, Filippetti A, Spaldin N A 2004 Nat. Mater. 3 164

  • [1]

    Schmid H 1994 Ferroelectrics 162 317

    [2]

    Spaldin N A, Fiebig M 2005 Science 309 391

    [3]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759

    [4]

    Cheong S W, Mostovoy M 2007 Nat. Mater. 6 13

    [5]

    Ramesh R, Spaldin N A 2007 Nat. Mater. 6 21

    [6]

    Ma J, Hu J M, Li Z, Nan C W 2011 Adv. Mater. 23 1062

    [7]

    Tokura Y, Seki S, Nagaosa N 2014 Rep. Prog. Phys. 77 076501

    [8]

    Dong S, Liu J M, Cheong S W, Ren Z F 2015 Adv. Phys. 64 519

    [9]

    Yin Y Y, Wang X, Deng H S, Zhou L, Dai J H, Long Y W 2017 Acta Phys. Sin. 66 030201 (in Chinese) [殷云宇, 王潇, 邓宏芟, 周龙, 戴建洪, 龙有文 2017 物理学报 66 030201]

    [10]

    Long Y W 2016 Chin. Phys. B 25 078108

    [11]

    Zhao Q, Yin Y Y, Dai J H, Shen X, Hu Z, Yang J Y, Wang Q T, Yu R C, Li X D, Long Y W 2016 Chin. Phys. B 25 020701

    [12]

    Khomskii D 2009 Physics 2 20

    [13]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, Ramesh R 2003 Science 299 1719

    [14]

    Popov Y F, Kadomtseva A M, Krotov S S, Belov D V, Vorobev G P, Makhov P N, Zvezdin A K 2001 Low Temp. Phys. 27 478

    [15]

    Sergienko I A, Sen C, Dagotto E 2006 Phys. Rev. Lett. 97 227204

    [16]

    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y 2003 Nature 426 55

    [17]

    Tokura Y, Seki Y 2010 Adv. Mater. 22 1554

    [18]

    Wang X, Chai Y S, Zhou L, Cao H B, Cruz C, Yang J Y, Dai J H, Yin Y Y, Yuan Z, Zhang S J, Yu R Z, Azuma M, Shimakawa Y, Zhang H M, Dong S, Sun Y, Jin C Q, Long Y W 2015 Phys. Rev. Lett. 115 087601

    [19]

    Feng J S, Xiang H J 2016 Phys. Rev. B 93 174416

    [20]

    Teague J R, Gerson R, James W J 1970 Solid State Commun. 8 1073

    [21]

    Zakharov Y N, Raevski I P, Eknadiosians E I, Pinskaya A N, Pustovaya L E, Borodin V Z 2000 Ferroelectrics 247 47

    [22]

    Zhou L, Dai J, Chai Y, Zhang H, Dong S, Cao H, Calder S, Yin Y, Wang X, Shen X, Liu Z, Saito T, Shimakawa Y, Hojo H, Ikuhara Y, Azuma M, Hu Z, Sun Y, Jin C Q, Long Y W 2017 Adv. Mater. 29 1703435

    [23]

    Larson A C, von Dreele R B 1994 General Structure Analysis System (GSAS) Report No. LAUR 86-748 (Los Alamos National Laboratory)

    [24]

    Brown I D, Altermatt D 1985 Acta Crystallogr. B41 244

    [25]

    Brese N E, OKeeffe M 1991 Acta Crystallogr. B47 192

    [26]

    Long Y W, Saito T, Mizumaki M, Agui A, Shimakawa Y 2009 J. Am. Chem. Soc. 131 16244

    [27]

    Scott J F, Kammerdiner L, Parris M, Traynor S, Ottenbacher V, Shavabkeh A, Oliver W F 1988 J. Appl. Phys. 64 787

    [28]

    Chai Y S, Oh Y S, Wang L J, Manivannan N, Feng S M, Yang Y S, Yan L Q, Jin C Q, Kim K H 2012 Phys. Rev. B 85 184406

    [29]

    Chapon L C, Blake G R, Gutmann M J, Park S, Hur N, Radaelli P G, Cheong S W 2004 Phys. Rev. Lett. 93 177402

    [30]

    Guo Y Y, Wang Y L, Liu J M, Wei T 2014 J. Appl. Phys. 116 063905

    [31]

    Hur N, Park S, Sharma P A, Ahn J S, Guha S, Cheong S W 2004 Nature 429 392

    [32]

    van Aken B, Palstra T T M, Filippetti A, Spaldin N A 2004 Nat. Mater. 3 164

  • [1] 陈兆亮, 卢达标, 叶旭斌, 赵浩婷, 张杰, 潘昭, 迟振华, 崔田, 沈瑶, 龙有文. 钙钛矿型CeTaN2O的高压制备及其磁性和电学性质. 物理学报, 2024, 73(8): 080702. doi: 10.7498/aps.73.20240025
    [2] 安明, 董帅. 电荷媒介的磁电耦合: 从铁电场效应到电荷序铁电体. 物理学报, 2020, 69(21): 217502. doi: 10.7498/aps.69.20201193
    [3] 陈诚, 卢建安, 杜微, 王伟, 毛翔宇, 陈小兵. Nd含量对Bi6−xNdxFe1.4Ni0.6Ti3O18多晶材料多铁性的影响. 物理学报, 2019, 68(3): 037701. doi: 10.7498/aps.68.20181287
    [4] 申见昕, 尚大山, 孙阳. 基于磁电耦合效应的基本电路元件和非易失性存储器. 物理学报, 2018, 67(12): 127501. doi: 10.7498/aps.67.20180712
    [5] 刘小强, 吴淑雅, 朱晓莉, 陈湘明. Ruddlesden-Popper结构杂化非本征铁电体及其多铁性. 物理学报, 2018, 67(15): 157503. doi: 10.7498/aps.67.20180317
    [6] 袁国亮, 李爽, 任申强, 刘俊明. 激发态电荷转移有机体的多铁性研究. 物理学报, 2018, 67(15): 157509. doi: 10.7498/aps.67.20180759
    [7] 赵润, 杨浩. 多铁性钙钛矿薄膜的氧空位调控研究进展. 物理学报, 2018, 67(15): 156101. doi: 10.7498/aps.67.20181028
    [8] 黄颖妆, 齐岩, 杜安, 刘佳宏, 艾传韡, 戴海燕, 张小丽, 黄雨嫣. 复合多铁链的磁电耦合行为与外场调控. 物理学报, 2018, 67(24): 247501. doi: 10.7498/aps.67.20181561
    [9] 吴枚霞, 李满荣. 异常双钙钛矿A2BB'O6氧化物的多铁性. 物理学报, 2018, 67(15): 157510. doi: 10.7498/aps.67.20180817
    [10] 梁文, 李泽明, 王璐颖, 陈琳, 李和平. 基于二水草酸镁(MgC2O42H2O)的无水碳酸镁(MgCO3)的高压制备和表征. 物理学报, 2017, 66(3): 036202. doi: 10.7498/aps.66.036202
    [11] 殷云宇, 王潇, 邓宏芟, 周龙, 戴建洪, 龙有文. 多种有序钙钛矿结构的高压制备与特殊物性. 物理学报, 2017, 66(3): 030201. doi: 10.7498/aps.66.030201
    [12] 毛翔宇, 邹保文, 孙慧, 陈春燕, 陈小兵. Co含量对Bi6Fe2-xCoxTi3O18样品多铁性的影响. 物理学报, 2015, 64(21): 217701. doi: 10.7498/aps.64.217701
    [13] 徐新河, 刘鹰, 甘月红, 刘文苗. 磁电耦合超材料本构矩阵获取方法的研究. 物理学报, 2015, 64(4): 044101. doi: 10.7498/aps.64.044101
    [14] 王美娜, 李英, 王天兴, 刘国栋. 正交多铁性材料DyMnO3的磁性质研究. 物理学报, 2013, 62(22): 227101. doi: 10.7498/aps.62.227101
    [15] 顾建军, 刘力虎, 岂云开, 徐芹, 张惠敏, 孙会元. 复合薄膜NiFe2 O4-BiFeO3 中的磁电耦合. 物理学报, 2011, 60(6): 067701. doi: 10.7498/aps.60.067701
    [16] 邓恒, 杨昌平, 黄昌, 徐玲芳. 双层钙钛矿La1.8Ca1.2Mn2O7磁性相关I-V非线性与电输运性质. 物理学报, 2010, 59(10): 7390-7395. doi: 10.7498/aps.59.7390
    [17] 马静, 施展, 林元华, 南策文. 准2-2型磁电多层复合材料的磁电性能. 物理学报, 2009, 58(8): 5852-5856. doi: 10.7498/aps.58.5852
    [18] 仲崇贵, 蒋青, 方靖淮, 葛存旺. 单相ABO3型多铁材料的磁电耦合及磁电性质研究. 物理学报, 2009, 58(5): 3491-3496. doi: 10.7498/aps.58.3491
    [19] 杨 颖, 李启昌, 刘俊明, 刘治国. 铁电磁体Pb(Fe1/2Nb1/2)O3的磁电性能研究. 物理学报, 2005, 54(9): 4213-4216. doi: 10.7498/aps.54.4213
    [20] 熊翰, 车广灿, 姚玉书, 倪泳明, 董成, 贾顺莲. 掺Ca-(RPr)-123系列超导体的高压合成. 物理学报, 2001, 50(9): 1783-1786. doi: 10.7498/aps.50.1783
计量
  • 文章访问数:  7778
  • PDF下载量:  359
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-04
  • 修回日期:  2018-05-29
  • 刊出日期:  2018-08-05

/

返回文章
返回