搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用速度成像技术研究碘乙烷多光子电离解离动力学

颜逸辉 刘玉柱 丁鹏飞 尹文怡

引用本文:
Citation:

利用速度成像技术研究碘乙烷多光子电离解离动力学

颜逸辉, 刘玉柱, 丁鹏飞, 尹文怡

Multiphoton ionization dissociation dynamics of iodoethane studied with velocity map imaging technique

Yan Yi-Hui, Liu Yu-Zhu, Ding Peng-Fei, Yin Wen-Yi
PDF
导出引用
  • 卤代烷烃会破坏臭氧层,而碘乙烷(C2H5I)是卤代烷烃中重要代表物质之一.采用离子速度成像技术、飞秒激光技术和飞行时间质谱技术,探究了C2H5I的多光子电离解离动力学.通过分析C2H5I在强场作用下多光子电离解离得到的解离通道、碎片的动能、角度分布和各向异性参数等信息来研究碘乙烷离子(C2H5I+)CI键裂解机理.根据飞行时间质谱实验,C2H5I在飞秒激光脉冲作用下发生多光子电离解离得到的碎片有C2H5+,I+,CH2I+,C2H2+,C2H3+,C2H4+等.与CI键相关的碎片为C2H5+和I+,解离机制分别对应于C2H5I+C2H5++I和C2H5I+C2H5+I+.同时,采用离子速度成像技术研究C2H5I+的CI键裂解产生的C2H5+和I+的速度影像,得出两者的速度分布和动能分布,分析结果表明CI键裂解产生C2H5+和I+的过程都存在高能通道和低能通道.进一步分析解离碎片离子的角度分布发现C2H5+解离时各向异性参数接近于0,可能对应于慢速的振动预解离过程.I+在解离时各向异性参数较高,可能源于排斥势能面上的快速解离过程.最后采用密度泛函理论计算了C2H5I分子电离前后构型变化、离子态的能级强度及谐振强度,对C2H5I+的解离机制做了更进一步的分析和讨论.
    Halogenated alkanes destroy the ozone layer, and iodoethane is one of the important representative halogenated alkanes. Time-of-flight mass spectrometry and velocity map imaging technique are used for investigating the photoionization dissociation dynamics of iodoethane, induced by 800 nm femtosecond laser. The dissociation mechanisms of iodoethane are obtained and discussed by analyzing the velocity distributions and angular distributions of the fragment ions generated in the dissociation. The measurements by time-of-flight mass spectrometry show that iodoethane cations generates C2H5+, I+, CH2I+, C2H2+, C2H3+ and C2H4+. The fragments related to CI bond fragmentation are C2H5+ ions and I+ ions, and the dissociation mechanisms are C2H5I+ C2H5++I and C2H5I+ C2H5+I+ respectively. Comparison between the configurations before and after ionization shows that the CI bond length is 0.2220 nm before ionization and turns longer and becomes 0.2329 nm after ionization. This indicates that the CI bond becomes more unstable after ionization and is more prone to dissociation. Moreover, the velocity map images of C2H5+ and I+ ions are acquired, from which the speed and angular distribution of C2H5+ and I+ are obtained. The analysis of speed distribution of the fragment ions shows that there are two channels, i.e. high energy channel and low energy channel in the dissociation process for producing C2H5+ and I+ ion. The difference between the ratios of the high energy channel and the low energy channel is small, indicating that the high energy channel and the low energy channel of the two dissociation processes are similar. According to the further analysis of the angular distribution of the fragment ions, it is found that the anisotropy parameter of C2H5+ is close to 0 (isotropic), the production channel of which may correspond to the slow vibration predissociation process. The anisotropy parameters of I+ ions are higher, which may be due to the rapid dissociation process on the repulsive potential energy surface. In addition, the density functional theory is used to calculate the configuration change of the iodoethane molecule before and after ionization, the energy level and oscillator strength for the ionic state in order to obtain more insights into the photodissociation dynamics.
      通信作者: 刘玉柱, yuzhu.liu@gmail.com
    • 基金项目: 国家重点研发计划(批准号:2017YFC0212700)、江苏省教育厅自然科学重大项目(批准号:18KJA140002)和北京大学人工微结构和介观物理国家重点实验室开放课题资助的课题.
      Corresponding author: Liu Yu-Zhu, yuzhu.liu@gmail.com
    • Funds: Project supported by the National Key Research and Development Plan of China (Grant No. 2017YFC0212700), the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province of China (Grant No. 18KJA140002), and the State Key Laboratory for Artificial Microstructure and Mesoscopic Physics of Pecking University, China.
    [1]

    Molina M J, Rowland F S 1974 Nature 249 810

    [2]

    Anderson J G, Toohey D W, Brune W H 1991 Science 251 39

    [3]

    Foster K L, Plastridge R A, Bottenheim J W, Shepso P B, Finlayson-Pitts B J, Spicer C W 2001 Science 291 471

    [4]

    Wu G, Jiang B, Ran Q, Zhang J, Harich S A, Yang X 2004 J. Chem. Phys. 120 2193

    [5]

    Baklanov A V, Aldener M, Lindgren B, Sassenberg U 2000 Chem. Phys. Lett. 325 399

    [6]

    Nijamudheen A, Datta A 2013 J. Phys. Chem. C 117 41

    [7]

    Xu Y Q, Qiu X J, Abulimiti B, Wang Y M, Tang Y, Zhang B 2012 Chem. Phys. Lett. 554 53

    [8]

    Tang Y, Lee W B, Hu Z F, Zhang B, Lin K C 2007 J. Chem. Phys. 126 064302

    [9]

    Schuttig H, Grotemeyer J 2011 Eur. J. Mass. Spectrom. 17 5

    [10]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477

    [11]

    Parker D H, Eppink A T J B 1997 J. Chem. Phys. 107 2357

    [12]

    Liu Y Z, Gerber T, Knopp G 2014 Acta Phys. Sin. 63 244208 (in Chinese)[刘玉柱, Gerber T, Knopp G 2014 物理学报 63 244208]

    [13]

    Liu Y Z, Xiao S R, Zhang C Y, Zheng G G, Chen Y Y 2012 Acta Phys. Sin. 61 193301 (in Chinese)[刘玉柱, 肖韶荣, 张成义, 郑改革, 陈云云 2012 物理学报 61 193301]

    [14]

    Frisch M J, Trucks G W, Schlegel H B, et al 2009 Gaussian 09 Revision E.01 Gaussian, Inc., Wallingford CT

    [15]

    Knoblauch N, Strobel A, Fischer I, Bondybey V E 1995 J. Chem. Phys. 103 5417

    [16]

    Lossing F P, Semeluk G P 1970 Can. J. Chem. 48 955

    [17]

    de Leeuw D M, Mooyman R, de Lange C A 1978 Chem. Phys. Lett. 54 231

    [18]

    Dribinski V, Ossadtchi A, Mandelshtam V A, Reisler H 2002 Rev. Sci. Instrum. 73 2634

    [19]

    Zare R N 1972 Mol. Photochem. 4 1

    [20]

    Goss S P, McGilvery D C, Morrison J D, Smith D L 1981 J. Chem. Phys. 75 1820

  • [1]

    Molina M J, Rowland F S 1974 Nature 249 810

    [2]

    Anderson J G, Toohey D W, Brune W H 1991 Science 251 39

    [3]

    Foster K L, Plastridge R A, Bottenheim J W, Shepso P B, Finlayson-Pitts B J, Spicer C W 2001 Science 291 471

    [4]

    Wu G, Jiang B, Ran Q, Zhang J, Harich S A, Yang X 2004 J. Chem. Phys. 120 2193

    [5]

    Baklanov A V, Aldener M, Lindgren B, Sassenberg U 2000 Chem. Phys. Lett. 325 399

    [6]

    Nijamudheen A, Datta A 2013 J. Phys. Chem. C 117 41

    [7]

    Xu Y Q, Qiu X J, Abulimiti B, Wang Y M, Tang Y, Zhang B 2012 Chem. Phys. Lett. 554 53

    [8]

    Tang Y, Lee W B, Hu Z F, Zhang B, Lin K C 2007 J. Chem. Phys. 126 064302

    [9]

    Schuttig H, Grotemeyer J 2011 Eur. J. Mass. Spectrom. 17 5

    [10]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477

    [11]

    Parker D H, Eppink A T J B 1997 J. Chem. Phys. 107 2357

    [12]

    Liu Y Z, Gerber T, Knopp G 2014 Acta Phys. Sin. 63 244208 (in Chinese)[刘玉柱, Gerber T, Knopp G 2014 物理学报 63 244208]

    [13]

    Liu Y Z, Xiao S R, Zhang C Y, Zheng G G, Chen Y Y 2012 Acta Phys. Sin. 61 193301 (in Chinese)[刘玉柱, 肖韶荣, 张成义, 郑改革, 陈云云 2012 物理学报 61 193301]

    [14]

    Frisch M J, Trucks G W, Schlegel H B, et al 2009 Gaussian 09 Revision E.01 Gaussian, Inc., Wallingford CT

    [15]

    Knoblauch N, Strobel A, Fischer I, Bondybey V E 1995 J. Chem. Phys. 103 5417

    [16]

    Lossing F P, Semeluk G P 1970 Can. J. Chem. 48 955

    [17]

    de Leeuw D M, Mooyman R, de Lange C A 1978 Chem. Phys. Lett. 54 231

    [18]

    Dribinski V, Ossadtchi A, Mandelshtam V A, Reisler H 2002 Rev. Sci. Instrum. 73 2634

    [19]

    Zare R N 1972 Mol. Photochem. 4 1

    [20]

    Goss S P, McGilvery D C, Morrison J D, Smith D L 1981 J. Chem. Phys. 75 1820

  • [1] 景文泉, 贾利娟, 孙兆鹏, 赵松峰, 束传存. 超快强场相干调控氯溴甲烷分子的解离研究. 物理学报, 2024, 73(24): 243301. doi: 10.7498/aps.73.20241401
    [2] 梁玮宸, 王昱寒, 张熙, 王飞, 贾凤东, 薛平, 钟志萍. 铷离子-铷原子混合阱飞行时间谱的拟合和仿真模拟. 物理学报, 2023, 72(9): 093401. doi: 10.7498/aps.72.20222273
    [3] 赵嘉琳, 程开, 于雪克, 赵纪军, 苏艳. 几种典型含能材料光激发解离的含时密度泛函理论研究. 物理学报, 2021, 70(20): 203301. doi: 10.7498/aps.70.20210670
    [4] 罗金龙, 凌丰姿, 李帅, 王艳梅, 张冰. 丁酮3s里德堡态的超快光解动力学研究. 物理学报, 2017, 66(2): 023301. doi: 10.7498/aps.66.023301
    [5] 秦朝朝, 黄燕, 彭玉峰. Br2分子在360610 nm的光解离动力学研究. 物理学报, 2017, 66(19): 193301. doi: 10.7498/aps.66.193301
    [6] 刘玉柱, 陈云云, 郑改革, 金峰, Gregor Knopp. 氟利昂F113分子在飞秒激光作用下的多光子电离解离动力学. 物理学报, 2016, 65(5): 053302. doi: 10.7498/aps.65.053302
    [7] 刘玉柱, 邓绪兰, 李帅, 管跃, 李静, 龙金友, 张冰. 氟利昂F114B2分子在飞秒紫外辐射下的解离动力学. 物理学报, 2016, 65(19): 193301. doi: 10.7498/aps.65.193301
    [8] 刘玉柱, 肖韶荣, 王俊锋, 何仲福, 邱学军, Gregor Knopp. 氟利昂F1110分子在飞秒激光脉冲作用下的多光子解离动力学. 物理学报, 2016, 65(11): 113301. doi: 10.7498/aps.65.113301
    [9] 杨雪, 闫冰, 连科研, 丁大军. 1,2-环己二酮基态光解离反应的理论研究. 物理学报, 2015, 64(21): 213101. doi: 10.7498/aps.64.213101
    [10] 姚洪斌, 张季, 彭敏, 李文亮. H2+在强激光场中的解离及其量子调控的理论研究. 物理学报, 2014, 63(19): 198202. doi: 10.7498/aps.63.198202
    [11] 王燕, 姚志, 冯春雷, 刘佳宏, 丁洪斌. 355 nm激光光电离甲醛飞行时间质谱的研究. 物理学报, 2012, 61(1): 013301. doi: 10.7498/aps.61.013301
    [12] 元晋鹏, 姬中华, 杨艳, 张洪山, 赵延霆, 马杰, 汪丽蓉, 肖连团, 贾锁堂. 飞行时间质谱探测磁光阱中超冷分子离子的实验研究. 物理学报, 2012, 61(18): 183301. doi: 10.7498/aps.61.183301
    [13] 刘玉柱, 肖韶荣, 张成义, 郑改革, 陈云云. 离子速度成像系统校准及1,4-氯溴丁烷的紫外光解动力学. 物理学报, 2012, 61(19): 193301. doi: 10.7498/aps.61.193301
    [14] 李 瑞, 闫 冰, 赵书涛, 郭庆群, 连科研, 田传进, 潘守甫. CH3I分子的光解离的自旋-轨道从头计算. 物理学报, 2008, 57(7): 4130-4133. doi: 10.7498/aps.57.4130
    [15] 姚关心, 汪小丽, 杜传梅, 李慧敏, 张先燚, 郑贤锋, 季学韩, 崔执凤. 丙酮分子的共振增强多光子电离解离过程的实验研究. 物理学报, 2006, 55(5): 2210-2214. doi: 10.7498/aps.55.2210
    [16] 石 勇, 李奇峰, 汪 华, 戴静华, 刘世林, 马兴孝. 由飞行时间质谱峰形获取光解碎片平动能分布. 物理学报, 2005, 54(5): 2418-2423. doi: 10.7498/aps.54.2418
    [17] 罗晓琳, 孔祥蕾, 牛冬梅, 渠洪波, 李海洋. 团簇增强的纳秒激光电离产生Xez+(z≤20)高价离子. 物理学报, 2005, 54(2): 606-611. doi: 10.7498/aps.54.606
    [18] 王 仲, 张立敏, 王 峰, 李 江, 俞书勤. 281—332nm SO+2的光碎片激发谱研究. 物理学报, 2003, 52(12): 3027-3034. doi: 10.7498/aps.52.3027
    [19] 徐海峰, 刘世林, 马兴孝, 戴东旭, 解金春, 沙国河. 紫外波段CH2I2分子的光解离动力学研究. 物理学报, 2002, 51(2): 240-246. doi: 10.7498/aps.51.240
    [20] 胡正发, 王振亚, 孔祥蕾, 张先燚, 李海洋, 周士康, 王娟, 武国华, 盛六四, 张允武. 甲胺分子的同步辐射光电离解离质谱. 物理学报, 2002, 51(2): 235-239. doi: 10.7498/aps.51.235
计量
  • 文章访问数:  6582
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-01
  • 修回日期:  2018-08-15
  • 刊出日期:  2019-10-20

/

返回文章
返回