搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

D-T中子诱发贫化铀球壳内裂变率分布实验

韩子杰 朱通华 鹿心鑫 秦建国 王玫 蒋励 杨波

引用本文:
Citation:

D-T中子诱发贫化铀球壳内裂变率分布实验

韩子杰, 朱通华, 鹿心鑫, 秦建国, 王玫, 蒋励, 杨波

Experimental study on fission reaction rate induced by D-T neutron in depleted uranium shell

Han Zi-Jie, Zhu Tong-Hua, Lu Xin-Xin, Qin Jian-Guo, Wang Mei, Jiang Li, Yang Bo
PDF
HTML
导出引用
  • 中子诱发裂变反应率是表征和检验中子在材料中的输运、裂变放能等过程的重要物理量. 贫化铀球壳裂变反应率径向分布数据可为铀核数据宏观检验及研究裂变放能与贫化铀球壳厚度的关系提供数据支持. 本文设计了内径为13.1 cm, 外径分别为18.10, 19.40, 23.35, 25.40, 28.45 cm的五种不同厚度的贫化铀球壳组合装置; 利用位于球壳中心的氘氚中子源轰击贫化铀球壳装置, 中子产额约为3 × 1010—4 × 1010 s–1; 在“赤道”平面与入射氘束成45°方向测量裂变反应率随径向分布的情况. 为了克服裂变室和俘获探测器等自身对模型和中子场的扰动, 本文选择与装置材料相同的贫化铀材料作为活化探测器, 以活化探测器中的裂变碎片143Ce发射的γ射线作为测量对象, 通过HPGe探测器测量的γ射线数, 基于143Ce裂变产额数据反推裂变反应率. 通过实验获得了贫化铀球壳内的裂变率及其径向分布规律, 裂变反应率和相对标准不确定度分别位于5.28 × 10–29—7.58 × 10–28之间和6%—11%之间. 基于蒙特卡罗程序和ENDF/BVI.8数据库完成了模拟计算, 并与实验结果进行了对比分析, 两者在不确定度范围内一致.
    Fission reaction rate is an important index for validating and checking the neutron transportation and fission power in nuclear engineering. The experimental data can be used in benchmark validation of cross sections, and in studying the correlation of fission power with the thickness of uranium sphere shell. There are five assemblies of depleted uranium shells used in this work, the inner radii of which are all fixed at 13.1 cm, while their outer radii are 18.1, 19.4, 23.35, 25.4 and 28.5 cm, respectively. The D-T neutron source is generated in the center of the assemblies, the yield of which is about 3 × 1010−4 × 1010 s–1. In horizontal plane across the center of the assemblies, the fission rates at positions along the radial direction are measured in the direction with 45° inclining with respect to the incident D+ beam. Due to the disturbance to assemblies and neutron field, the activation foil of uranium is a suitable choice rather than fission chamber or capture detector. The material of activation foil is the same as that in the experimental assemblies. Considering the accurate fission yield of 143Ce, the objective nuclides are selected. The total fission yield of 143Ce is contributed by 238U and a little 235U. For calculating the total fission yiled of 143Ce, the neutron energy range of 0−15 MeV is divided into eight subranges. By measuring the 293 keV gamma rays from the fission product 143Ce in activation foils with a TRANS-SPEC-DX100 HPGe detector, with a relative efficiency 40%, the fission rates and the trends at positions along the radial direction in the five assemblies are obtained based on the 143Ce fission product yield. The fission rate ranges from 5.28 × 10–29 to 7.58 × 10–28 sn-1·nuclide–1, with the relative uncertainty in a range from 6% to 11%. The Monte Carlo transport code MCNP5 and continuous energy cross section library ENDF/BV.8 are used for analyzing the fission rate distribution in the assemblies, and the experiemtal configuration, including the wall of the experimental hall is described in detail in the model. The calculated results are compared with the experimental ones and their agreement is found to be in an uncertainty range.
      通信作者: 秦建国, stingg@126.com
    • 基金项目: 国家自然科学基金(批准号: 11575165, 11775200)和国家磁约束核聚变能发展研究专项(批准号: 2015GB108006)资助的课题.
      Corresponding author: Qin Jian-Guo, stingg@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11575165, 11775200) and the National Magnetic Confinement Fusion Science Program of China (Grant No. 2015GB108006).
    [1]

    Yu J N, Yu G 2009 J. Nucl. Mater 386−388 949

    [2]

    Robert G Mills 1981 IEEE Trans. Power Apparatus Systems PAS-100 1173Google Scholar

    [3]

    张俊, 张大林, 王成龙, 田文喜, 秋穗正, 苏光辉 2017 原子能科学技术 51 2230Google Scholar

    Zhang J, Zhang D L, Wang C L, Tian W X, Qiu S Z, Su G H 2017 At. Energ. Sci. Technol. 51 2230Google Scholar

    [4]

    刘国明, 程和平, 邵增 2012 原子能科学技术 46 272

    Liu G M, Cheng H P, Shao Z 2012 At. Energ. Sci. Technol. 46 272

    [5]

    马纪敏, 刘永康 2012 原子能科学技术 46 437

    Ma J M, Liu Y K 2012 At. Energ. Sci. Technol. 46 437

    [6]

    徐红, 杨永伟, 周志伟 2009 原子能科学技术 43 97

    Xu H, Yang Y W, Zhou Z W 2009 At. Energ. Sci. Technol. 43 97

    [7]

    Li M S, Liu R, Shi X M, Yi W W, Peng X J 2012 Fusion Eng. Des. 87 1420Google Scholar

    [8]

    马纪敏, 刘永康, 李茂生 2012 核动力工程 33 16Google Scholar

    Ma J M, Liu Y K, Li M S 2012 Nucl. Power Eng. 33 16Google Scholar

    [9]

    伊炜伟, 胡泽华, 李茂生 2010 核动力工程 31 125

    Yi W W, Hu Z H, Li M S 2010 Nucl. Power Eng. 31 125

    [10]

    Weale J W, Goodfellow H, Mctaggart M H, Mullender M L 1961 J. Nucl. Energ. 14 91

    [11]

    Akiyama M, Oka Y, Kanasugi K, Hashikura H, Kondo S 1987 Ann. Nucl. Energy 14 543Google Scholar

    [12]

    Afanas’ev V V, Belevitin A G, Verzilov Y M, Romodanov V L, Khro-mov V V, Markovskii D V, Shatalov G E 1991 At. Energ. 71 901Google Scholar

    [13]

    Zhu T H, Yang C W, Lu X X, Liu R, Han Z J, Jiang L, Wang M 2014 Ann. Nucl. Energy 63 486Google Scholar

    [14]

    Kimio Y, Shigeru I, Hisao O, Tetsuo M 1983 Jpn. J. Appl. Phys. 22 324Google Scholar

    [15]

    Li Y G, Shi Y Q, Zhang Y B, Xia P 2001 Radiat. Meas. 34 589Google Scholar

    [16]

    Szabó J, Pálfalvi J K, Strádi A, Bilski P, Swakoń J, Stolarczyk L 2018 Nucl. Instrum. Meth. Phys. Res. A 888 196Google Scholar

    [17]

    Wojciechowski A, Lim Y C, Stepanenko V, Tiutiunnikov S, Khilmanovich A, Martsynkevich B 2016 Measurement 90 118Google Scholar

    [18]

    Lin H X, Chen W L, Liu Y H, Sheu R J 2016 Nucl. Instrum. Meth. Phys. Res. A 811 94Google Scholar

    [19]

    Yang Y W, Yan X S, Liu R, Lu X X, Jiang L, Lin J F 2012 Fusion Eng. Des. 87 1679Google Scholar

    [20]

    冯松, 刘荣, 鹿心鑫, 羊奕伟, 王玫, 蒋励, 秦建国 2014 物理学报 63 162501Google Scholar

    Feng S, Liu R, Lu X X, Yang Y W, Wang M, Jiang L, Qin J G 2014 Acta Phys.Sin. 63 162501Google Scholar

    [21]

    鹿心鑫, 朱通华, 刘荣, 蒋励, 王玫, 林菊芳, 温中伟 2011 原子能科学技术 45 645

    Lu X X, Zhu T H, Liu R, Jiang L, Wang M, Lin J F, Wen Z W 2011 At. Energ. Sci. Technol. 45 645

    [22]

    Zhu T H, Han Z J, Jiang L, Wang M, Lu X X, Yang C W, Liu R 2015 J. Nucl. Sci. Technol. 52 1383Google Scholar

    [23]

    Gooden M E, Arnold C W, Becker J A, Bhatia C, Bhike M, Bond E M, Bredeweg T A, Fallin B, Fowler M M, Howell C R, Kelley J H, Krishichayan, Macri R, Rusev G, Ryan C, Sheets S A, Stoyer M A, Tonchev A P, Tornow W, Vieira D J, Wilhelmy J B 2016 Nuclear Data Sheets 131 319Google Scholar

    [24]

    刘荣, 林理彬, 王大伦, 励义俊, 蒋励, 陈素和, 王玫, 杨可 1999 核电子学与探测技术 19 428Google Scholar

    Liu R, Lin L B, Wang D L, Li Y J, Jiang L, Chen S H, Wang M, Yang K 1999 Nuclear Electron. Detect. Technol. 19 428Google Scholar

    [25]

    Lu X D, Tian D F, Xie D 2004 Nucl. Instrum. Meth. Phys. Res. A 519 647Google Scholar

    [26]

    Zhu C X, Chen Y, Mou Y F, Zheng P, He T, Wang X H, An L, Guo H P 2011 Nucl. Sci. Eng. 169 188Google Scholar

  • 图 1  (a)贫化铀装置实物图; (b)蒙特卡罗模型5片活化探测器分布情况(45°方向中的1, 2, 3, 4, 5)

    Fig. 1.  (a) Physical map of depleted uranium device; (b) distribution of five activation detectors in Monte Carlo Model 5 (1, 2, 3, 4, 5 in the direction of 45°).

    图 2  HPGe探测器测量的贫化铀活化探测器发射的γ

    Fig. 2.  γ spectrum of depleted uranium activation detector, detected by using HPGe detector.

    图 3  五种模型中的裂变反应率分布情况

    Fig. 3.  Fission reaction rate distribution for five models.

    图 4  五种模型不同测量点处的中子通量密度(蒙特卡罗模拟计算)

    Fig. 4.  Neutron flux density at various measuring positions of five models (Monte Carlo simulation).

    图 5  贫化铀装置中不同位置裂变率C/E

    Fig. 5.  C/E ratio of fission reaction rate for various measuring position in depleted uranium assembly.

    表 1  五种贫化铀球壳的外径及厚度

    Table 1.  Radius and thickness of depleted uranium shells.

    模型编号外半径Rout/cm厚度L/cm
    118.105.00
    219.406.30
    323.3510.25
    425.4012.30
    528.4515.35
    下载: 导出CSV

    表 2  五种模型中活化探测器的布放位置

    Table 2.  Position of activation detector in various models

    模型编号L/cm
    p1p2p3p4p5
    113.6014.6215.6416.1617.18
    214.6015.6216.6417.6618.68
    314.6016.6218.6420.6621.68
    415.6018.6220.6422.6624.68
    515.6018.6220.6424.1627.18
    下载: 导出CSV

    表 3  YCe-143

    Table 3.  Values of YCe-143.

    Model No.p1/%p2/%p3/%p4/%p5/%
    14.294.324.334.344.34
    24.334.354.374.384.37
    34.364.414.454.454.46
    44.404.474.494.504.49
    54.414.484.514.554.55
    下载: 导出CSV

    表 4  裂变反应率总不确定度

    Table 4.  Synthesize uncertainty of fission reaction rate.

    PositionModel 1Model 2Model 3Model 4Model 5
    p1/%6.56.56.57.46.1
    p2/%6.26.35.77.27.0
    p3/%6.55.86.78.610.0
    p4/%6.56.36.59.59.5
    p5/%6.56.17.010.910.9
    下载: 导出CSV
  • [1]

    Yu J N, Yu G 2009 J. Nucl. Mater 386−388 949

    [2]

    Robert G Mills 1981 IEEE Trans. Power Apparatus Systems PAS-100 1173Google Scholar

    [3]

    张俊, 张大林, 王成龙, 田文喜, 秋穗正, 苏光辉 2017 原子能科学技术 51 2230Google Scholar

    Zhang J, Zhang D L, Wang C L, Tian W X, Qiu S Z, Su G H 2017 At. Energ. Sci. Technol. 51 2230Google Scholar

    [4]

    刘国明, 程和平, 邵增 2012 原子能科学技术 46 272

    Liu G M, Cheng H P, Shao Z 2012 At. Energ. Sci. Technol. 46 272

    [5]

    马纪敏, 刘永康 2012 原子能科学技术 46 437

    Ma J M, Liu Y K 2012 At. Energ. Sci. Technol. 46 437

    [6]

    徐红, 杨永伟, 周志伟 2009 原子能科学技术 43 97

    Xu H, Yang Y W, Zhou Z W 2009 At. Energ. Sci. Technol. 43 97

    [7]

    Li M S, Liu R, Shi X M, Yi W W, Peng X J 2012 Fusion Eng. Des. 87 1420Google Scholar

    [8]

    马纪敏, 刘永康, 李茂生 2012 核动力工程 33 16Google Scholar

    Ma J M, Liu Y K, Li M S 2012 Nucl. Power Eng. 33 16Google Scholar

    [9]

    伊炜伟, 胡泽华, 李茂生 2010 核动力工程 31 125

    Yi W W, Hu Z H, Li M S 2010 Nucl. Power Eng. 31 125

    [10]

    Weale J W, Goodfellow H, Mctaggart M H, Mullender M L 1961 J. Nucl. Energ. 14 91

    [11]

    Akiyama M, Oka Y, Kanasugi K, Hashikura H, Kondo S 1987 Ann. Nucl. Energy 14 543Google Scholar

    [12]

    Afanas’ev V V, Belevitin A G, Verzilov Y M, Romodanov V L, Khro-mov V V, Markovskii D V, Shatalov G E 1991 At. Energ. 71 901Google Scholar

    [13]

    Zhu T H, Yang C W, Lu X X, Liu R, Han Z J, Jiang L, Wang M 2014 Ann. Nucl. Energy 63 486Google Scholar

    [14]

    Kimio Y, Shigeru I, Hisao O, Tetsuo M 1983 Jpn. J. Appl. Phys. 22 324Google Scholar

    [15]

    Li Y G, Shi Y Q, Zhang Y B, Xia P 2001 Radiat. Meas. 34 589Google Scholar

    [16]

    Szabó J, Pálfalvi J K, Strádi A, Bilski P, Swakoń J, Stolarczyk L 2018 Nucl. Instrum. Meth. Phys. Res. A 888 196Google Scholar

    [17]

    Wojciechowski A, Lim Y C, Stepanenko V, Tiutiunnikov S, Khilmanovich A, Martsynkevich B 2016 Measurement 90 118Google Scholar

    [18]

    Lin H X, Chen W L, Liu Y H, Sheu R J 2016 Nucl. Instrum. Meth. Phys. Res. A 811 94Google Scholar

    [19]

    Yang Y W, Yan X S, Liu R, Lu X X, Jiang L, Lin J F 2012 Fusion Eng. Des. 87 1679Google Scholar

    [20]

    冯松, 刘荣, 鹿心鑫, 羊奕伟, 王玫, 蒋励, 秦建国 2014 物理学报 63 162501Google Scholar

    Feng S, Liu R, Lu X X, Yang Y W, Wang M, Jiang L, Qin J G 2014 Acta Phys.Sin. 63 162501Google Scholar

    [21]

    鹿心鑫, 朱通华, 刘荣, 蒋励, 王玫, 林菊芳, 温中伟 2011 原子能科学技术 45 645

    Lu X X, Zhu T H, Liu R, Jiang L, Wang M, Lin J F, Wen Z W 2011 At. Energ. Sci. Technol. 45 645

    [22]

    Zhu T H, Han Z J, Jiang L, Wang M, Lu X X, Yang C W, Liu R 2015 J. Nucl. Sci. Technol. 52 1383Google Scholar

    [23]

    Gooden M E, Arnold C W, Becker J A, Bhatia C, Bhike M, Bond E M, Bredeweg T A, Fallin B, Fowler M M, Howell C R, Kelley J H, Krishichayan, Macri R, Rusev G, Ryan C, Sheets S A, Stoyer M A, Tonchev A P, Tornow W, Vieira D J, Wilhelmy J B 2016 Nuclear Data Sheets 131 319Google Scholar

    [24]

    刘荣, 林理彬, 王大伦, 励义俊, 蒋励, 陈素和, 王玫, 杨可 1999 核电子学与探测技术 19 428Google Scholar

    Liu R, Lin L B, Wang D L, Li Y J, Jiang L, Chen S H, Wang M, Yang K 1999 Nuclear Electron. Detect. Technol. 19 428Google Scholar

    [25]

    Lu X D, Tian D F, Xie D 2004 Nucl. Instrum. Meth. Phys. Res. A 519 647Google Scholar

    [26]

    Zhu C X, Chen Y, Mou Y F, Zheng P, He T, Wang X H, An L, Guo H P 2011 Nucl. Sci. Eng. 169 188Google Scholar

  • [1] 刘东昆, 王庆宇, 张田, 周羽, 王翔. 大晶粒UO2燃料裂变气体释放行为相场模拟研究. 物理学报, 2024, 73(6): 066102. doi: 10.7498/aps.73.20231773
    [2] 刘超, 刘世龙, 杨毅, 冯晶, 李昱兆. 252Cf自发裂变K X射线发射与动能-电荷关系. 物理学报, 2024, 73(14): 142501. doi: 10.7498/aps.73.20240563
    [3] 刘昌奇, 韦峥. 中子诱发232Th裂变初始碎片质量及动能分布Monte-Carlo研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211333
    [4] 何铁, 肖军, 安力, 阳剑, 郑普. 基于裂变γ标识技术的瞬发裂变中子谱测量新方法. 物理学报, 2018, 67(21): 212501. doi: 10.7498/aps.67.20180563
    [5] 冯松, 刘荣, 鹿心鑫, 羊奕伟, 王玫, 蒋励, 秦建国. 离线测量钍快中子裂变反应率方法. 物理学报, 2014, 63(16): 162501. doi: 10.7498/aps.63.162501
    [6] 高辉, 谢奇林, 刘晓波, 黄坡, 宋凌莉, 梁文峰, 范晓强. 瞬发超临界系统内持续裂变链的发展过程. 物理学报, 2013, 62(22): 222801. doi: 10.7498/aps.62.222801
    [7] 张小东, 邱孟通, 张建福, 欧阳晓平, 张显鹏, 陈亮. 一种基于4He气闪烁体的裂变中子探测器. 物理学报, 2012, 61(23): 232502. doi: 10.7498/aps.61.232502
    [8] 严小松, 刘荣, 鹿心鑫, 蒋励, 王玫, 林菊芳. 贫化铀/聚乙烯球壳交替系统中铀-238中子俘获率的测量与分析. 物理学报, 2012, 61(10): 102801. doi: 10.7498/aps.61.102801
    [9] 贾 飞, 徐瑚珊, 黄天衡, 袁小华, 张宏斌, 李君清, W.Scheid. 基于双核模型对准裂变产物质量分布的研究. 物理学报, 2007, 56(3): 1347-1352. doi: 10.7498/aps.56.1347
    [10] 欧阳晓平, 李真富, 王群书, 霍裕昆, 马彦良, 张前美, 张国光, 金玉仁. 狭缝式高灵敏裂变中子探测系统. 物理学报, 2005, 54(10): 4643-4647. doi: 10.7498/aps.54.4643
    [11] 黄胜年, 陈进贵, 韩洪银. U238自发裂变瞬时中子数目几率分布. 物理学报, 1974, 23(1): 46-51. doi: 10.7498/aps.23.46
    [12] 王豫生, 许谨诚. Pu240自发裂变放出瞬时中子数目的几率分布. 物理学报, 1974, 23(1): 38-45. doi: 10.7498/aps.23.38
    [13] 卓益忠, 李泽清, 李明寿. 原子核的对相互作用对裂变碎块角分布的影响. 物理学报, 1966, 22(2): 136-145. doi: 10.7498/aps.22.136
    [14] 李泽清, 黄胜年, 卓益忠, 喻传赞. 裂变碎块的电荷分布与碎块动能. 物理学报, 1966, 22(2): 245-249. doi: 10.7498/aps.22.245
    [15] 喻传赞, 郭建中. 裂变统计理论存在的问题. 物理学报, 1966, 22(1): 111-114. doi: 10.7498/aps.22.111
    [16] 叶宣化, 王德焴. 关于裂变中子谱的进一步研究. 物理学报, 1965, 21(3): 546-559. doi: 10.7498/aps.21.546
    [17] 冯锡璋. 偶偶核的自裂变势垒厚度. 物理学报, 1964, 20(9): 938-939. doi: 10.7498/aps.20.938
    [18] 卓益忠, 李泽清. 裂变碎块角分布与鞍点结构. 物理学报, 1964, 20(10): 1003-1018. doi: 10.7498/aps.20.1003
    [19] 肖振喜, 叶宗垣, 张应, 黄胜年. U235及Pu239裂变中子能谱的测量. 物理学报, 1962, 18(9): 467-470. doi: 10.7498/aps.18.467
    [20] 王德焴, 叶宣化. 关于裂变中子谱结构现象的理论探讨. 物理学报, 1962, 18(9): 471-482. doi: 10.7498/aps.18.471
计量
  • 文章访问数:  8296
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-16
  • 修回日期:  2019-05-07
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-05

/

返回文章
返回