搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于真实信息传播者的谣言传播模型的动力学分析

张菊平 郭昊明 荆文君 靳祯

引用本文:
Citation:

基于真实信息传播者的谣言传播模型的动力学分析

张菊平, 郭昊明, 荆文君, 靳祯

Dynamic analysis of rumor propagation model based on true information spreader

Zhang Ju-Ping, Guo Hao-Ming, Jing Wen-Jun, Jin Zhen
PDF
HTML
导出引用
  • 在谣言传播过程中加入真实信息的传播者, 考虑了人们对谣言的遗忘因素, 建立了SITR (susceptible-infective-true-removed)谣言传播模型. 利用下一代矩阵得到了谣言传播的阈值K0, 证明了K0 < 1时无谣言传播者无真实信息传播者平衡点的稳定性, 给出了边界平衡点(即有谣言传播者但无真实信息传播者, 及无谣言传播者但有真实信息传播者平衡点)存在的条件, 以及它们的稳定性, 发现了两个边界平衡点出现双稳的区域, 获得了不同条件下正平衡点的存在性, 及其局部稳定性. 最后, 通过数值模拟验证了理论结果, 模拟分析了真实信息传播者的初始值对谣言传播者的峰值及谣言的持续时间等的影响.
    In the process of rumor propagation, people who know the truth or judge the truth can spread true information about rumors. Therefore, on the rumor propagation, it is significant to introduce the spreaders who spread true information in the rumor propagation. But the previous studies did not take into consideration the influence of true information spreading on the rumor propagation. In this paper, the susceptible-infective-true-removed (SITR) rumor propagation model with the true information spreader and the forgetting factor of rumors is established. The threshold K0 is obtained by using the method of the next generation matrix. If K0 < 1, the balance between no rumor and no true information spreader is locally asymptotically stable. The existence and stability of two boundary balance (that is, there are rumor spreaders but no true information spreaders, and there are no rumor spreaders but true information spreaders) are proved. The bistable region of two-boundary balance is given. Further, under different conditions we obtain the existence and locally asymptotical stability of positive balance (rumor spreaders and true information spreaders coexist). Finally, the theoretical results are verified by numerical simulations. We find that the initial value of the true information spreaders affects the peak value of the rumor spreaders and the duration of the rumor. The bigger the initial value of the true information spreaders, the smaller the peak value of the rumor spreaders is and the shorter the duration of the rumor is. The initial value of the rumor spreaders affects the peak value of the rumor spreaders, and the time when the rumor spreaders reach the peak value. The larger the initial value of the rumor spreaders, the larger the peak value of the rumor spreaders is and the earlier the peak value appears. But the initial value of the rumor spreaders does not affect the duration of the rumor. Therefore, in the process of rumor propagation, according to mathematical analysis of the rumor propagation model, we find that the rumor spread is a very complicated process. The results of mathematical analysis can provide theoretical basis to control the rumor propagation and reduce the negative effects of rumors.
      通信作者: 靳祯, jinzhn@263.net
    • 基金项目: 国家自然科学基金(批准号: 61873154, 11601294)和山西省自然科学基金(批准号: 201801D121008, 201801D121206)资助的课题.
      Corresponding author: Jin Zhen, jinzhn@263.net
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61873154, 11601294) and the Natural Science Foundation of Shanxi Province, China (Grant Nos. 201801D121008, 201801D121206).
    [1]

    Daley D J, Kendall D G 1964 Nature 204 1118Google Scholar

    [2]

    Sudbury A 1985 J. Appl. Prob. 22 443Google Scholar

    [3]

    Zanette D H 2001 Phys. Rev. E 64 050901Google Scholar

    [4]

    Zanette D H 2002 Phys. Rev. E 65 041908Google Scholar

    [5]

    Nekovee M, Moreno Y, Bianconi G, Marsili M 2007 Physica A 374 457Google Scholar

    [6]

    Moreno Y, Nekovee M, Pacheco A F 2004 Phys. Rev. E 69 066130Google Scholar

    [7]

    Zhao L J, Wang J J, Chen Y C, Wang Q, Cheng J J, Cui H X 2012 Physica A 391 2444Google Scholar

    [8]

    Zhao L J, Wang Q, Cheng J J, Chen Y C, Wang J J, Huang W 2011 Physica A 390 2619Google Scholar

    [9]

    Deng S F, Li W 2017 Phys. Rev. E 95 042306

    [10]

    Zan Y L, Wu J L, Li P, Yu Q L 2014 Physica A 405 159Google Scholar

    [11]

    Wang Y Q, Yang X Y, Han Y L, Wang X A 2013 Commun. Theor. Phys. 59 510Google Scholar

    [12]

    Yang L X, Zang T R, Yang X F, Wu Y B, Tang Y Y 2017 arXiv: 1705.10618v1 [cs.SI]

    [13]

    He Z B, Cai Z P, Yu J G, Wang X M, Sun Y C, Li Y S 2017 IEEE. T. Veh. Technol. 66 2789Google Scholar

    [14]

    Huo, Liang’an, Wang L, Song N X, Ma C Y, He B 2017 Physica A 468 855Google Scholar

    [15]

    Zhang Y H, Zhu J J 2018 Physica A 503 862Google Scholar

    [16]

    Xiao Y P, Chen D Q, Wei S H, Li Q, Wang H H, Xu M 2019 Nonlinear Dyn. 95 523Google Scholar

    [17]

    顾亦然, 夏玲玲 2012 物理学报 61 238701Google Scholar

    Gu Y R, Xia L L 2012 Acta Phys. Sin. 61 238701Google Scholar

    [18]

    王辉, 韩江洪, 邓林, 程克勤 2013 物理学报 62 110505Google Scholar

    Wang H, Han J H, Deng L, Cheng K Q 2013 Acta Phys. Sin. 62 110505Google Scholar

    [19]

    张亚明, 苏妍嫄, 刘海鸥 2017 系统科学与数学 37 1960

    Zhang Y M, Su Y Y, Liu H O 2017 J. Sys. Sci. Math. Scis. 37 1960

    [20]

    万贻平, 张东戈, 任清辉 2015 物理学报 64 240501Google Scholar

    Wan Y P, Zhang D G, Ren Q H 2015 Acta Phys. Sin. 64 240501Google Scholar

    [21]

    冉茂洁, 刘超, 黄贤英, 刘小洋, 杨宏雨, 张光建 2018 计算机应用 38 3312

    Ran M J, Liu C, Huang X Y, Liu X Y, Yang H Y, Zhang G J 2018 J. Comput. Appl. 38 3312

    [22]

    赵敏, 陈文霞, 宋乾坤 2018 应用数学和力学 39 1400

    Zhao M, Chen W X, Song Q K 2018 Appl. Math. Mech. 39 1400

    [23]

    Driessche P, Watmough J 2002 Math. Biosci. 180 29Google Scholar

    [24]

    Routh E J 1877 A Streatis on the Stability of Given State of Motion (London: Macmillan) pp3−21

    [25]

    Jin Z, Sun G Q, Zhu H P 2014 Math. Biosci. Eng. 11 1295Google Scholar

    [26]

    Yao Y R, Zhang J P 2016 J. Biol. Syst. 24 577Google Scholar

    [27]

    Jing W J, Jin Z, Zhang J P 2018 J. Biol. Dynam. 12 486Google Scholar

  • 图 1  真实信息影响下谣言传播流程图

    Fig. 1.  Flow chart of rumor propagation under the influence of true information.

    图 2  $K_1$$K_2$ 的关系图, 参数取值为$\alpha_1=0.6, $$\beta=0.6,\; A=0.2, \;\mu=0.2, \;\theta=0.01, \;\epsilon=0.01$

    Fig. 2.  Diagram of $K_1$ and $K_2$. The parameter values are $\alpha_1= 0.6,\; \beta=0.6,\; A=0.2,\; \mu =0.2, \;\theta =0.01,\; \epsilon=0.01 $

    图 3  $K_1$$K_2$关系图($\alpha_1=0.7, \beta=0.9, A=0.2,\ \mu=$$0.2,\; \theta=0.01)$ (a) $\epsilon=0.01$, $\epsilon<(1-\alpha_1)\beta$; (b) $\epsilon=0.3$, $\epsilon>(1-\alpha_1)\beta$

    Fig. 3.  Diagram of $K_1$ and $K_2$ ($\alpha_1\!= 0.7,\; \beta\!=0.9,\; A\!=0.2,$ $\mu=0.2,\; \theta=0.01$): (a) $\epsilon=0.01$, $\epsilon<(1-\alpha_1)\beta$; (b) $\epsilon=$ $0.3,\; \epsilon > (1-\alpha_1)\beta$

    图 4  $\alpha_1 = 0.3,\;\beta = 0.6,\; A = 0.2,\;\mu =0.2,\;\theta = 0.01,\;\epsilon = 0.01,\;\delta = 0.15$时, (a) S, I, T的时间序列图和(b) I-T相平面图

    Fig. 4.  When $\alpha_1 = 0.3,\;\beta = 0.6,\; A = 0.2,\;\mu =0.2,\;\theta = 0.01,\;\epsilon = 0.01,\;\delta = 0.15$, (a) time series graph of S, I, and T; (b) phase plan of I-T.

    图 5  $\alpha_1 = 0.7,\;\beta = 0.9,\; A = 0.2,\;\mu =0.2,\;\theta = 0.01,\;\epsilon = 0.01,\;\delta = 0.36$时, (a) S, I, T的时间序列图和(b) I-T相平面图

    Fig. 5.  When $\alpha_1 = 0.7,\;\beta = 0.9,\; A = 0.2,\;\mu =0.2,\;\theta = 0.01,\;\epsilon = 0.01,\;\delta = 0.36$, (a) time series graph of S, I, and T; (b) phase plan of I-T.

    图 6  $\alpha_1 = 0.7,\;\beta = 0.9,\; A = 0.2,\;\mu =0.2,\;\theta = 0.01,\;\epsilon = 0.01,\;\delta = 0.22$时, (a) S, I, T的时间序列图和(b) I-T相平面图

    Fig. 6.  When $\alpha_1 = 0.7,\;\beta = 0.9,\; A = 0.2,\;\mu =0.2,\;\theta = 0.01,\;\epsilon = 0.01,\;\delta = 0.22$, (a) time series graph of S, I, and T; (b) phase plan of I-T.

    图 7  $T(0)$不相同时, 系统(2)的解趋于不同的边界平衡点 (a) I的时间序列图; (b) 时间增加后I 的时间序列图

    Fig. 7.  When $T(0)$ is different, the solution of system (2) tends to the different boundary equilibrium: (a) Time series graph of I; (b) time series graph of I after time increment.

    图 8  $\alpha_1 = 0.7,\;\beta = 0.9,\; A = 0.2,\;\mu =0.2,\;\theta = 0.01,\;\epsilon = 0.01,\;\delta = 0.3 $时, (a) S, I, T的时间序列图和(b) I-T相平面图

    Fig. 8.  When $\alpha_1 = 0.7,\;\beta = 0.9,\; A = 0.2,\;\mu =0.2,\;\theta = 0.01,\;\epsilon = 0.01,\;\delta = 0.3 $, (a) time series graph of S, I, and T; (b) phase plan of I-T.

    图 9  $\alpha_1 = 0.7,\;\beta = 0.9,\; A = 0.2,\;\mu =0.2,\;\theta = 0.01,\;\epsilon = 0.3,\;\delta = 0.3 $时, (a) S, I, T的时间序列图和(b) I-T相平面图

    Fig. 9.  When $\alpha_1 = 0.7,\;\beta = 0.9,\; A = 0.2,\;\mu =0.2,\;\theta = 0.01,\;\epsilon = 0.3,\;\delta = 0.3 $, (a) time series graph of S, I, and T; (b) phase plan of I-T.

    图 10  $ \alpha_1 = 0.5,\;\beta = 0.6,\; A = 0.2,\;\mu =0.2,\;\theta = 0.01,\;\epsilon = 0.01,\;\delta = 0.24 $时, (a) S, I, T的时间序列图和(b) I-T相平面图

    Fig. 10.  When $\alpha_1 = 0.5,\;\beta = 0.6,\; A = 0.2,\;\mu =0.2,\;\theta = 0.01,\;\epsilon = 0.01,\;\delta = 0.24 $, (a) time series graph of S, I, and T; (b) phase plan of I-T.

    图 11  (a)不同真实信息传播者的初始值对谣言传播的影响; (b)不同谣言传播者的初始值对谣言传播的影响; 参数取值 $\alpha_1=0.7$, $\beta=0.9$, $\delta=0.36$, $A=0.2$, $\mu=0.2$, $\theta=0.01$, $\epsilon=0.01$

    Fig. 11.  (a) Influence of different initial values of true information spreaders; (b) influence of different initial values of rumor spreaders on the rumor propagation. The parameter values are $\alpha_1=0.7$, $\beta=0.9$, $\delta=0.36$, $A=0.2$, $\mu=0.2$, $\theta=0.01$, $\epsilon=0.01$.

    图 12  (a) T(0)与谣言传播者峰值$I_{\rm {max}}$的散点图; (b) 根据数据点拟合得到的曲线图

    Fig. 12.  (a) Scatter plot of T(0) and the peak value $I_{\rm {max}}$ of rumor spreaders; (b) the curve graph of fitting data points.

    表 1  系统(2)平衡点之间的关系

    Table 1.  Relationship table between the equilibria of system (2).

    系统(2)的平衡点
    $ \epsilon< \left( {1 - {\alpha _1}} \right){\rm{\beta }}$${K_2} > {K_1}$${K_2} > \dfrac{{{K_1}\left( {\mu {R_1} + \theta } \right)}}{{\mu + \theta }}$${K_2} < 1$图3(a)中黄色区域${E_0},\;E_1^*$
    ${K_2} > 1 > {K_1}$图3(a)中绿色区域${E_0},\;{E_2},\;E_1^*$
    ${K_1} > 1$图3(a)中紫色区域${E_0},\;{E_1},\;{E_2},\;E_1^*$
    ${K_2} < \dfrac{{{K_1}\left( {\mu {K_1} + \theta } \right)}}{{\mu + \theta }}$$\epsilon < \left( {1 - 2{\alpha _1} } \right)\beta + \dfrac{ {\delta \theta } }{\mu },{\varDelta _1} \geqslant 0$图3(a)中蓝色区域${E_0},\;{E_1},\;{E_2},\;E_6^*,\;E_7^*$
    ${K_2} < {K_1}$${K_1} < 1$图3(a)中橙色区域$E_0$
    ${K_1} > 1 > {K_2}$图3(a)中红色区域$E_0,\;E_1$
    ${K_1} > {K_2} > 1$图3(a)中空白区域$E_0,\;E_1,\;E_2$
    $\epsilon > \left( {1 - {\alpha _1}} \right){\rm{\beta }}$${K_2} > {K_{1,}}$${K_2} > \dfrac{{{K_1}\left( {\mu {K_1} + \theta } \right)}}{{\mu + \theta }}$${K_2} < 1$图3(b)中黄色区域$E_0,\;E_2^*$
    ${K_2} > 1 > {K_1}$图3(b)中绿色区域$E_0,\;E_2,\;E_2^*$
    ${K_1} > 1$图3(b)中紫色区域$E_0,\;E_1,\;E_2,\;E_2^*$
    $K_2<K_1$$K_1<1$图3(b)中橙色区域$E_0$
    $K_1>1>K_2$图3(b)中红色区域$E_0,\;E_1$
    $1 < {K_2} < \dfrac{{{K_1}\left( {\mu {K_1} + \theta } \right)}}{{\mu + \theta }}$图3(b)中空白区域$E_0,\;E_1,\;E_2$
    下载: 导出CSV
  • [1]

    Daley D J, Kendall D G 1964 Nature 204 1118Google Scholar

    [2]

    Sudbury A 1985 J. Appl. Prob. 22 443Google Scholar

    [3]

    Zanette D H 2001 Phys. Rev. E 64 050901Google Scholar

    [4]

    Zanette D H 2002 Phys. Rev. E 65 041908Google Scholar

    [5]

    Nekovee M, Moreno Y, Bianconi G, Marsili M 2007 Physica A 374 457Google Scholar

    [6]

    Moreno Y, Nekovee M, Pacheco A F 2004 Phys. Rev. E 69 066130Google Scholar

    [7]

    Zhao L J, Wang J J, Chen Y C, Wang Q, Cheng J J, Cui H X 2012 Physica A 391 2444Google Scholar

    [8]

    Zhao L J, Wang Q, Cheng J J, Chen Y C, Wang J J, Huang W 2011 Physica A 390 2619Google Scholar

    [9]

    Deng S F, Li W 2017 Phys. Rev. E 95 042306

    [10]

    Zan Y L, Wu J L, Li P, Yu Q L 2014 Physica A 405 159Google Scholar

    [11]

    Wang Y Q, Yang X Y, Han Y L, Wang X A 2013 Commun. Theor. Phys. 59 510Google Scholar

    [12]

    Yang L X, Zang T R, Yang X F, Wu Y B, Tang Y Y 2017 arXiv: 1705.10618v1 [cs.SI]

    [13]

    He Z B, Cai Z P, Yu J G, Wang X M, Sun Y C, Li Y S 2017 IEEE. T. Veh. Technol. 66 2789Google Scholar

    [14]

    Huo, Liang’an, Wang L, Song N X, Ma C Y, He B 2017 Physica A 468 855Google Scholar

    [15]

    Zhang Y H, Zhu J J 2018 Physica A 503 862Google Scholar

    [16]

    Xiao Y P, Chen D Q, Wei S H, Li Q, Wang H H, Xu M 2019 Nonlinear Dyn. 95 523Google Scholar

    [17]

    顾亦然, 夏玲玲 2012 物理学报 61 238701Google Scholar

    Gu Y R, Xia L L 2012 Acta Phys. Sin. 61 238701Google Scholar

    [18]

    王辉, 韩江洪, 邓林, 程克勤 2013 物理学报 62 110505Google Scholar

    Wang H, Han J H, Deng L, Cheng K Q 2013 Acta Phys. Sin. 62 110505Google Scholar

    [19]

    张亚明, 苏妍嫄, 刘海鸥 2017 系统科学与数学 37 1960

    Zhang Y M, Su Y Y, Liu H O 2017 J. Sys. Sci. Math. Scis. 37 1960

    [20]

    万贻平, 张东戈, 任清辉 2015 物理学报 64 240501Google Scholar

    Wan Y P, Zhang D G, Ren Q H 2015 Acta Phys. Sin. 64 240501Google Scholar

    [21]

    冉茂洁, 刘超, 黄贤英, 刘小洋, 杨宏雨, 张光建 2018 计算机应用 38 3312

    Ran M J, Liu C, Huang X Y, Liu X Y, Yang H Y, Zhang G J 2018 J. Comput. Appl. 38 3312

    [22]

    赵敏, 陈文霞, 宋乾坤 2018 应用数学和力学 39 1400

    Zhao M, Chen W X, Song Q K 2018 Appl. Math. Mech. 39 1400

    [23]

    Driessche P, Watmough J 2002 Math. Biosci. 180 29Google Scholar

    [24]

    Routh E J 1877 A Streatis on the Stability of Given State of Motion (London: Macmillan) pp3−21

    [25]

    Jin Z, Sun G Q, Zhu H P 2014 Math. Biosci. Eng. 11 1295Google Scholar

    [26]

    Yao Y R, Zhang J P 2016 J. Biol. Syst. 24 577Google Scholar

    [27]

    Jing W J, Jin Z, Zhang J P 2018 J. Biol. Dynam. 12 486Google Scholar

  • [1] 王楠, 肖敏, 蒋海军, 黄霞. 时滞和扩散影响下社交网络谣言传播动力学. 物理学报, 2022, 71(18): 180201. doi: 10.7498/aps.71.20220726
    [2] 许锦, 郭洋宁, 罗宁宁, 李淑静, 史久林, 何兴道. 水体参数对受激布里渊散射阈值及增益的影响. 物理学报, 2021, 70(15): 154205. doi: 10.7498/aps.70.20210326
    [3] 王祁月, 刘润然, 贾春晓. 复杂网络上的意见动力学对谣言传播的影响. 物理学报, 2021, 70(6): 068902. doi: 10.7498/aps.70.20201486
    [4] 朱霖河, 李玲. 基于辟谣机制的时滞谣言传播模型的动力学分析. 物理学报, 2020, 69(2): 020501. doi: 10.7498/aps.69.20191503
    [5] 万贻平, 张东戈, 任清辉. 考虑谣言清除过程的网络谣言传播与抑制. 物理学报, 2015, 64(24): 240501. doi: 10.7498/aps.64.240501
    [6] 徐艳, 陈飞, 谢冀江, 李殿军, 杨贵龙, 高飞, 郭劲. 半导体抽运铯蒸气激光器阈值特性分析. 物理学报, 2014, 63(17): 174201. doi: 10.7498/aps.63.174201
    [7] 苏兆锋, 杨海亮, 张鹏飞, 来定国, 郭建明, 任书庆, 王强. 脉冲电场下两种电极材料表面电子发射阈值特性的实验研究. 物理学报, 2014, 63(10): 106801. doi: 10.7498/aps.63.106801
    [8] 王辉, 韩江洪, 邓林, 程克勤. 基于移动社交网络的谣言传播动力学研究. 物理学报, 2013, 62(11): 110505. doi: 10.7498/aps.62.110505
    [9] 张小安, 李耀宗, 赵永涛, 梁昌慧, 程锐, 周贤明, 王兴, 雷瑜, 孙渊博, 徐戈, 李锦玉, 肖国青. Arq+入射金表面激发靶原子M-X射线的动能和势能的阈值. 物理学报, 2012, 61(11): 113401. doi: 10.7498/aps.61.113401
    [10] 毛明明, 徐晨, 魏思民, 解意洋, 刘久澄, 许坤. 质子注入能量对垂直腔面发射激光器的阈值和功率的影响. 物理学报, 2012, 61(21): 214207. doi: 10.7498/aps.61.214207
    [11] 顾亦然, 夏玲玲. 在线社交网络中谣言的传播与抑制. 物理学报, 2012, 61(23): 238701. doi: 10.7498/aps.61.238701
    [12] 侯威, 章大全, 周云, 杨萍. 一种确定极端事件阈值的新方法:随机重排去趋势波动分析方法. 物理学报, 2011, 60(10): 109202. doi: 10.7498/aps.60.109202
    [13] 赵红东, 张卫华, 李文超, 刘会丽, 孙梅. 电流孔的尺寸对双氧化限制垂直腔面发射激光器阈值的影响. 物理学报, 2010, 59(6): 3948-3952. doi: 10.7498/aps.59.3948
    [14] 付方正, 李明. 蒙特卡罗法计算无序激光器的阈值. 物理学报, 2009, 58(9): 6258-6263. doi: 10.7498/aps.58.6258
    [15] 杨 萍, 侯 威, 封国林. 基于去趋势波动分析方法确定极端事件阈值. 物理学报, 2008, 57(8): 5333-5342. doi: 10.7498/aps.57.5333
    [16] 王 宏, 欧阳征标, 韩艳玲, 孟庆生, 罗贤达, 刘劲松. 随机性对部分随机介质激光器阈值的影响. 物理学报, 2007, 56(5): 2616-2622. doi: 10.7498/aps.56.2616
    [17] 薛迎红, 王清月, 柴 路, 刘庆文, 赵广军, 苏良碧, 徐晓东, 徐 军. LD抽运Yb:GSO实现1090 nm低阈值激光运转. 物理学报, 2006, 55(1): 456-459. doi: 10.7498/aps.55.456
    [18] 林殿阳, 高洪岩, 王双义, 蒋萧村, 吕志伟. 多纵模受激布里渊散射阈值. 物理学报, 2005, 54(9): 4151-4156. doi: 10.7498/aps.54.4151
    [19] 张新陆, 王月珠, 鞠有伦. 能量传递上转换对Tm,Ho:YLF激光器阈值的影响. 物理学报, 2005, 54(1): 117-122. doi: 10.7498/aps.54.117
    [20] 郝建红, 丁 武, 张治畴. 行波管放大器中场极限环和混沌行为的阈值分析. 物理学报, 2003, 52(8): 1979-1983. doi: 10.7498/aps.52.1979
计量
  • 文章访问数:  13895
  • PDF下载量:  286
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-10
  • 修回日期:  2019-05-05
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-05

/

返回文章
返回