-
中子诱发裂变反应率是表征和检验中子在材料中的输运、裂变放能等过程的重要物理量. 贫化铀球壳裂变反应率径向分布数据可为铀核数据宏观检验及研究裂变放能与贫化铀球壳厚度的关系提供数据支持. 本文设计了内径为13.1 cm, 外径分别为18.10, 19.40, 23.35, 25.40, 28.45 cm的五种不同厚度的贫化铀球壳组合装置; 利用位于球壳中心的氘氚中子源轰击贫化铀球壳装置, 中子产额约为3 × 1010—4 × 1010 s–1; 在“赤道”平面与入射氘束成45°方向测量裂变反应率随径向分布的情况. 为了克服裂变室和俘获探测器等自身对模型和中子场的扰动, 本文选择与装置材料相同的贫化铀材料作为活化探测器, 以活化探测器中的裂变碎片143Ce发射的γ射线作为测量对象, 通过HPGe探测器测量的γ射线数, 基于143Ce裂变产额数据反推裂变反应率. 通过实验获得了贫化铀球壳内的裂变率及其径向分布规律, 裂变反应率和相对标准不确定度分别位于5.28 × 10–29—7.58 × 10–28之间和6%—11%之间. 基于蒙特卡罗程序和ENDF/BVI.8数据库完成了模拟计算, 并与实验结果进行了对比分析, 两者在不确定度范围内一致.Fission reaction rate is an important index for validating and checking the neutron transportation and fission power in nuclear engineering. The experimental data can be used in benchmark validation of cross sections, and in studying the correlation of fission power with the thickness of uranium sphere shell. There are five assemblies of depleted uranium shells used in this work, the inner radii of which are all fixed at 13.1 cm, while their outer radii are 18.1, 19.4, 23.35, 25.4 and 28.5 cm, respectively. The D-T neutron source is generated in the center of the assemblies, the yield of which is about 3 × 1010−4 × 1010 s–1. In horizontal plane across the center of the assemblies, the fission rates at positions along the radial direction are measured in the direction with 45° inclining with respect to the incident D+ beam. Due to the disturbance to assemblies and neutron field, the activation foil of uranium is a suitable choice rather than fission chamber or capture detector. The material of activation foil is the same as that in the experimental assemblies. Considering the accurate fission yield of 143Ce, the objective nuclides are selected. The total fission yield of 143Ce is contributed by 238U and a little 235U. For calculating the total fission yiled of 143Ce, the neutron energy range of 0−15 MeV is divided into eight subranges. By measuring the 293 keV gamma rays from the fission product 143Ce in activation foils with a TRANS-SPEC-DX100 HPGe detector, with a relative efficiency 40%, the fission rates and the trends at positions along the radial direction in the five assemblies are obtained based on the 143Ce fission product yield. The fission rate ranges from 5.28 × 10–29 to 7.58 × 10–28 sn-1·nuclide–1, with the relative uncertainty in a range from 6% to 11%. The Monte Carlo transport code MCNP5 and continuous energy cross section library ENDF/BV.8 are used for analyzing the fission rate distribution in the assemblies, and the experiemtal configuration, including the wall of the experimental hall is described in detail in the model. The calculated results are compared with the experimental ones and their agreement is found to be in an uncertainty range.
-
Keywords:
- depleted uranium /
- fission reaction rate /
- 143Ce /
- fission product yield
[1] Yu J N, Yu G 2009 J. Nucl. Mater 386−388 949
[2] Robert G Mills 1981 IEEE Trans. Power Apparatus Systems PAS-100 1173Google Scholar
[3] 张俊, 张大林, 王成龙, 田文喜, 秋穗正, 苏光辉 2017 原子能科学技术 51 2230Google Scholar
Zhang J, Zhang D L, Wang C L, Tian W X, Qiu S Z, Su G H 2017 At. Energ. Sci. Technol. 51 2230Google Scholar
[4] 刘国明, 程和平, 邵增 2012 原子能科学技术 46 272
Liu G M, Cheng H P, Shao Z 2012 At. Energ. Sci. Technol. 46 272
[5] 马纪敏, 刘永康 2012 原子能科学技术 46 437
Ma J M, Liu Y K 2012 At. Energ. Sci. Technol. 46 437
[6] 徐红, 杨永伟, 周志伟 2009 原子能科学技术 43 97
Xu H, Yang Y W, Zhou Z W 2009 At. Energ. Sci. Technol. 43 97
[7] Li M S, Liu R, Shi X M, Yi W W, Peng X J 2012 Fusion Eng. Des. 87 1420Google Scholar
[8] 马纪敏, 刘永康, 李茂生 2012 核动力工程 33 16Google Scholar
Ma J M, Liu Y K, Li M S 2012 Nucl. Power Eng. 33 16Google Scholar
[9] 伊炜伟, 胡泽华, 李茂生 2010 核动力工程 31 125
Yi W W, Hu Z H, Li M S 2010 Nucl. Power Eng. 31 125
[10] Weale J W, Goodfellow H, Mctaggart M H, Mullender M L 1961 J. Nucl. Energ. 14 91
[11] Akiyama M, Oka Y, Kanasugi K, Hashikura H, Kondo S 1987 Ann. Nucl. Energy 14 543Google Scholar
[12] Afanas’ev V V, Belevitin A G, Verzilov Y M, Romodanov V L, Khro-mov V V, Markovskii D V, Shatalov G E 1991 At. Energ. 71 901Google Scholar
[13] Zhu T H, Yang C W, Lu X X, Liu R, Han Z J, Jiang L, Wang M 2014 Ann. Nucl. Energy 63 486Google Scholar
[14] Kimio Y, Shigeru I, Hisao O, Tetsuo M 1983 Jpn. J. Appl. Phys. 22 324Google Scholar
[15] Li Y G, Shi Y Q, Zhang Y B, Xia P 2001 Radiat. Meas. 34 589Google Scholar
[16] Szabó J, Pálfalvi J K, Strádi A, Bilski P, Swakoń J, Stolarczyk L 2018 Nucl. Instrum. Meth. Phys. Res. A 888 196Google Scholar
[17] Wojciechowski A, Lim Y C, Stepanenko V, Tiutiunnikov S, Khilmanovich A, Martsynkevich B 2016 Measurement 90 118Google Scholar
[18] Lin H X, Chen W L, Liu Y H, Sheu R J 2016 Nucl. Instrum. Meth. Phys. Res. A 811 94Google Scholar
[19] Yang Y W, Yan X S, Liu R, Lu X X, Jiang L, Lin J F 2012 Fusion Eng. Des. 87 1679Google Scholar
[20] 冯松, 刘荣, 鹿心鑫, 羊奕伟, 王玫, 蒋励, 秦建国 2014 物理学报 63 162501Google Scholar
Feng S, Liu R, Lu X X, Yang Y W, Wang M, Jiang L, Qin J G 2014 Acta Phys.Sin. 63 162501Google Scholar
[21] 鹿心鑫, 朱通华, 刘荣, 蒋励, 王玫, 林菊芳, 温中伟 2011 原子能科学技术 45 645
Lu X X, Zhu T H, Liu R, Jiang L, Wang M, Lin J F, Wen Z W 2011 At. Energ. Sci. Technol. 45 645
[22] Zhu T H, Han Z J, Jiang L, Wang M, Lu X X, Yang C W, Liu R 2015 J. Nucl. Sci. Technol. 52 1383Google Scholar
[23] Gooden M E, Arnold C W, Becker J A, Bhatia C, Bhike M, Bond E M, Bredeweg T A, Fallin B, Fowler M M, Howell C R, Kelley J H, Krishichayan, Macri R, Rusev G, Ryan C, Sheets S A, Stoyer M A, Tonchev A P, Tornow W, Vieira D J, Wilhelmy J B 2016 Nuclear Data Sheets 131 319Google Scholar
[24] 刘荣, 林理彬, 王大伦, 励义俊, 蒋励, 陈素和, 王玫, 杨可 1999 核电子学与探测技术 19 428Google Scholar
Liu R, Lin L B, Wang D L, Li Y J, Jiang L, Chen S H, Wang M, Yang K 1999 Nuclear Electron. Detect. Technol. 19 428Google Scholar
[25] Lu X D, Tian D F, Xie D 2004 Nucl. Instrum. Meth. Phys. Res. A 519 647Google Scholar
[26] Zhu C X, Chen Y, Mou Y F, Zheng P, He T, Wang X H, An L, Guo H P 2011 Nucl. Sci. Eng. 169 188Google Scholar
-
表 1 五种贫化铀球壳的外径及厚度
Table 1. Radius and thickness of depleted uranium shells.
模型编号 外半径Rout/cm 厚度L/cm 1 18.10 5.00 2 19.40 6.30 3 23.35 10.25 4 25.40 12.30 5 28.45 15.35 表 2 五种模型中活化探测器的布放位置
Table 2. Position of activation detector in various models
模型编号 L/cm p1 p2 p3 p4 p5 1 13.60 14.62 15.64 16.16 17.18 2 14.60 15.62 16.64 17.66 18.68 3 14.60 16.62 18.64 20.66 21.68 4 15.60 18.62 20.64 22.66 24.68 5 15.60 18.62 20.64 24.16 27.18 表 3 YCe-143值
Table 3. Values of YCe-143.
Model No. p1/% p2/% p3/% p4/% p5/% 1 4.29 4.32 4.33 4.34 4.34 2 4.33 4.35 4.37 4.38 4.37 3 4.36 4.41 4.45 4.45 4.46 4 4.40 4.47 4.49 4.50 4.49 5 4.41 4.48 4.51 4.55 4.55 表 4 裂变反应率总不确定度
Table 4. Synthesize uncertainty of fission reaction rate.
Position Model 1 Model 2 Model 3 Model 4 Model 5 p1/% 6.5 6.5 6.5 7.4 6.1 p2/% 6.2 6.3 5.7 7.2 7.0 p3/% 6.5 5.8 6.7 8.6 10.0 p4/% 6.5 6.3 6.5 9.5 9.5 p5/% 6.5 6.1 7.0 10.9 10.9 -
[1] Yu J N, Yu G 2009 J. Nucl. Mater 386−388 949
[2] Robert G Mills 1981 IEEE Trans. Power Apparatus Systems PAS-100 1173Google Scholar
[3] 张俊, 张大林, 王成龙, 田文喜, 秋穗正, 苏光辉 2017 原子能科学技术 51 2230Google Scholar
Zhang J, Zhang D L, Wang C L, Tian W X, Qiu S Z, Su G H 2017 At. Energ. Sci. Technol. 51 2230Google Scholar
[4] 刘国明, 程和平, 邵增 2012 原子能科学技术 46 272
Liu G M, Cheng H P, Shao Z 2012 At. Energ. Sci. Technol. 46 272
[5] 马纪敏, 刘永康 2012 原子能科学技术 46 437
Ma J M, Liu Y K 2012 At. Energ. Sci. Technol. 46 437
[6] 徐红, 杨永伟, 周志伟 2009 原子能科学技术 43 97
Xu H, Yang Y W, Zhou Z W 2009 At. Energ. Sci. Technol. 43 97
[7] Li M S, Liu R, Shi X M, Yi W W, Peng X J 2012 Fusion Eng. Des. 87 1420Google Scholar
[8] 马纪敏, 刘永康, 李茂生 2012 核动力工程 33 16Google Scholar
Ma J M, Liu Y K, Li M S 2012 Nucl. Power Eng. 33 16Google Scholar
[9] 伊炜伟, 胡泽华, 李茂生 2010 核动力工程 31 125
Yi W W, Hu Z H, Li M S 2010 Nucl. Power Eng. 31 125
[10] Weale J W, Goodfellow H, Mctaggart M H, Mullender M L 1961 J. Nucl. Energ. 14 91
[11] Akiyama M, Oka Y, Kanasugi K, Hashikura H, Kondo S 1987 Ann. Nucl. Energy 14 543Google Scholar
[12] Afanas’ev V V, Belevitin A G, Verzilov Y M, Romodanov V L, Khro-mov V V, Markovskii D V, Shatalov G E 1991 At. Energ. 71 901Google Scholar
[13] Zhu T H, Yang C W, Lu X X, Liu R, Han Z J, Jiang L, Wang M 2014 Ann. Nucl. Energy 63 486Google Scholar
[14] Kimio Y, Shigeru I, Hisao O, Tetsuo M 1983 Jpn. J. Appl. Phys. 22 324Google Scholar
[15] Li Y G, Shi Y Q, Zhang Y B, Xia P 2001 Radiat. Meas. 34 589Google Scholar
[16] Szabó J, Pálfalvi J K, Strádi A, Bilski P, Swakoń J, Stolarczyk L 2018 Nucl. Instrum. Meth. Phys. Res. A 888 196Google Scholar
[17] Wojciechowski A, Lim Y C, Stepanenko V, Tiutiunnikov S, Khilmanovich A, Martsynkevich B 2016 Measurement 90 118Google Scholar
[18] Lin H X, Chen W L, Liu Y H, Sheu R J 2016 Nucl. Instrum. Meth. Phys. Res. A 811 94Google Scholar
[19] Yang Y W, Yan X S, Liu R, Lu X X, Jiang L, Lin J F 2012 Fusion Eng. Des. 87 1679Google Scholar
[20] 冯松, 刘荣, 鹿心鑫, 羊奕伟, 王玫, 蒋励, 秦建国 2014 物理学报 63 162501Google Scholar
Feng S, Liu R, Lu X X, Yang Y W, Wang M, Jiang L, Qin J G 2014 Acta Phys.Sin. 63 162501Google Scholar
[21] 鹿心鑫, 朱通华, 刘荣, 蒋励, 王玫, 林菊芳, 温中伟 2011 原子能科学技术 45 645
Lu X X, Zhu T H, Liu R, Jiang L, Wang M, Lin J F, Wen Z W 2011 At. Energ. Sci. Technol. 45 645
[22] Zhu T H, Han Z J, Jiang L, Wang M, Lu X X, Yang C W, Liu R 2015 J. Nucl. Sci. Technol. 52 1383Google Scholar
[23] Gooden M E, Arnold C W, Becker J A, Bhatia C, Bhike M, Bond E M, Bredeweg T A, Fallin B, Fowler M M, Howell C R, Kelley J H, Krishichayan, Macri R, Rusev G, Ryan C, Sheets S A, Stoyer M A, Tonchev A P, Tornow W, Vieira D J, Wilhelmy J B 2016 Nuclear Data Sheets 131 319Google Scholar
[24] 刘荣, 林理彬, 王大伦, 励义俊, 蒋励, 陈素和, 王玫, 杨可 1999 核电子学与探测技术 19 428Google Scholar
Liu R, Lin L B, Wang D L, Li Y J, Jiang L, Chen S H, Wang M, Yang K 1999 Nuclear Electron. Detect. Technol. 19 428Google Scholar
[25] Lu X D, Tian D F, Xie D 2004 Nucl. Instrum. Meth. Phys. Res. A 519 647Google Scholar
[26] Zhu C X, Chen Y, Mou Y F, Zheng P, He T, Wang X H, An L, Guo H P 2011 Nucl. Sci. Eng. 169 188Google Scholar
计量
- 文章访问数: 8391
- PDF下载量: 74
- 被引次数: 0