搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三氯一氟甲烷分子在辐射场中的光谱性质与解离特性研究

吴永刚 刘家兴 刘红玲 徐梅 令狐荣锋

引用本文:
Citation:

三氯一氟甲烷分子在辐射场中的光谱性质与解离特性研究

吴永刚, 刘家兴, 刘红玲, 徐梅, 令狐荣锋

Spectrum and dissociation properties of fluoro trichloro methane molecule in radiational field

Wu Yong-Gang, Liu Jia-Xing, Liu Hong-Ling, Xu Mei, Linghu Rong-Feng
PDF
HTML
导出引用
  • 采用B3LYP/6-311++g(3df, 3pd)方法和基组对氟利昂物质CFC-11 (CFCl3)分子进行了一系列的理论研究. 包括了该分子的基态结构、电偶极矩、总能量、最高占据分子轨道能级EH和最低未占据分子轨道能级EL、能隙、红外与拉曼光谱性质、C—F键解离, 并探讨电场对该分子的影响. 结果表明: 基态结构优化后的理论计算值和实验值的最大误差低于2%, C—F键受电场强度的增大而被拉长, 能隙EgEHEL的变化出现先增大后减小; 电场影响着CFC-11分子的红外与拉曼光谱吸收强度, 红外与拉曼光谱随着电场变化出现红移或蓝移现象. 电场可作为一种辅助手段对其重叠或准重叠谱线进行分离. 势阱深度随反向电场逐渐增大而减小, 直至消失, 使得C—F键的束缚能力逐渐减弱. 本文有望为实现CFC-11分子最终发生解离而降解提供一种可行有效的调控手段.
    The ozone layer in the stratosphere of the earth’s atmosphere, which can be destroyed by CFC-11 molecule, plays a crucial role in human survival because it can absorb most of the harmful radiation from the sun and effectively protect the earth’s biology. Therefore, it is of evident significance to investigate the properties of CFC-11 molecule. By Motivated by this and the adoption of B3LYP complex function at a level of 6-311++g(3df, 3pd) basis set, we carry out a series of theoretical studies of the Freon material CFC-11 (CFCl3) molecules, including the studies of the equilibrium structure, electric dipole moment, total energy, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) level, energy gap, infrared and Raman spectrum, C—F dissociation characteristics of CFC-11 molecule, and the effect of the applied electric field on CFC-11 molecule as well. The results show that the maximum error between the theoretical calculation value and the experimental value is less than 2% for an optimized ground state structure; the C—F bond length and C—Cl bond length extend with the increase of electric field intensity, but the degree of change of C—F bond length is much stronger than that of C—Cl; the HOMO energy level and total energy go up and then come down as the external field rises, while the LUMO energy level goes up as the field increases. The energy gap Eg first increases and then decreases with the variation of EH and EL. The dipole moment without electric field is a minimum value, and the external electric field leads the molecular polarity to increase and the molecular activity to strengthen. The electric field influences the absorption intensity of infrared and Raman spectrum. The infrared and Raman spectrum move toward the long wave under the action of positive electric field, while they move toward the short wave under the action of negative electric field. The red- or blue-shift of infrared and Raman spectrum occur with the change of electric field. The electric field can be adopted as an auxiliary means to separate the overlapping or quasi-overlapping spectral lines. The potential well depth decreases with the increase of the reverse electric field until it vanishes, which causes the bound state ability of C—F bond of CFC-11 molecule to gradually degrade. This paper is expected to provide a feasible and effective tunable means for the final dissociation and degradation of CFC-11 molecules.
      通信作者: 吴永刚, ygwu0946@163.com
    • 基金项目: 贵州省教育厅青年科技人才成长项目(批准号: 黔教合KY字[2016]214)、贵州师范学院国家科技部和国家自然科学基金项目奖励补助资金项目(批准号: 黔科合平台人才[2017]5790-03)和贵州省科学技术基金(批准号: 黔科合J字[2013]2219)资助的课题.
      Corresponding author: Wu Yong-Gang, ygwu0946@163.com
    • Funds: Project supported by the Growth Foundation for Young Scientists of Education Department of Guizhou Province, China (Grant No. QJHKY[2016]214), the Awards of the Ministry of Science and Technology and the Natural Science Foundation of Guizhou Education University, China (Grant No. QKHPTRC[2017]5790-03), and the Guizhou Science and Technology Foundation of China (Grant No. QKHJ[2013]2219).
    [1]

    Stratford J 2002 Estimating CFC Releases from Cutting of Fridges (Scottish: Scottish Environment Protection Agency) p1

    [2]

    Molina M J, Rowland F S 1974 Nature 249 810Google Scholar

    [3]

    Farman J C, Gardiner B G, Shanklin J D 1985 Nature 315 207Google Scholar

    [4]

    Vollmer M K, Young D, Trudinger C M, Mühle J, Henne S, Rigby M, Park S, Li S, Guillevic M, Mitrevski B, Harth C M, Miller B R, Reimann S, Yao B, Steele L P, Wyss S A, Lunder C R, Arduini J, McCulloch A, Wu S H, Rhee T S, Wang R H J, Salameh P K, Hermansen O, Hill M, Langenfelds R L, Ivy D, O’Doherty S, Krummel P B , Maione M, Etheridge D M, Zhou L X, Fraser P J, Prinn R G, Weiss R F, Simmonds P G 2018 Atmos. Chem. Phys. 18 979Google Scholar

    [5]

    Schuck T J, Lefrancois F, Gallmann F, Wang D, Jesswein M, Hoker J, Bönisch H, Engel A 2018 Atmos. Chem. Phys. 18 16553Google Scholar

    [6]

    LeedhamElvidge E, Bönisch H, Brenninkmeijer C A, Engel A, Fraser P J, Gallacher E, Langenfelds R, Mühle J, Oram D E, Ray E A, Ridley A R, Röckmann T, Sturges W T, Weiss R F, Laube J C 2018 Atmos. Chem. Phys. 18 3369Google Scholar

    [7]

    Warner M J, Bullister J L, Wisegarver D P, Gammon R H, Weiss R F 1996 J. Geophys. Res. Oceans 101 20525Google Scholar

    [8]

    Willey D A, Fine R A, Sonnerup R E, Bullister J L, Smethie Jr W M, Warner M J 2004 Geophys. Res. Lett. 31 L01303Google Scholar

    [9]

    Font R, Fullana A, Caballero J A, Candela J, Garcıa A 2001 J. Anal. Appl. 58−59 63Google Scholar

    [10]

    Cullis C F, Hirschler M M 1981 The Combustion of Organic Polymers (London: Clarendon Press Oxford) p120

    [11]

    Lattimer R P, Williams R C 2002 J. Anal. Appl. Pyroly. 63 85Google Scholar

    [12]

    刘玉柱, 肖韶荣, 王俊锋, 何仲福, 邱学军, Gregor Knopp 2016 物理学报 65 113301Google Scholar

    Liu Y Z, Xiao S R Wang J F, He Z F, Qiu X J, Gregor K 2016 Acta Phys. Sin. 65 113301Google Scholar

    [13]

    侯健, 韩功元, 张振满, 潘循皙, 侯惠奇 1999 复旦学报 (自然科学版) 38 627

    Hou J, Han G Y, Zhang Z M, Pan X X, Hou H Q 1999 J. Fudan Univ. (Natural Science) 38 627

    [14]

    谢安东, 谢晶, 周玲玲, 伍冬兰, 阮文, 罗文浪 2016 原子与分子物理学报 33 989

    Xie A D, Xie J, Zhou L L, Wu D L, Ruan W, Luo W L 2016 Chin. J. Atom. Mol. Phys. 33 989

    [15]

    尹文怡, 刘玉柱, 林华, 李炳生, 秦朝朝 2018 光谱学与光谱分析 38 21

    Yin W Y, Liu Y Z, Lin H, Li B S, Qin C C 2018 Spectrosc. Spect. Anal. 38 21

    [16]

    李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成 2018 物理学报 67 183101Google Scholar

    Li Y S, Xie Y L, Huang T H, Xu C, Liu G C 2018 Acta Phys. Sin. 67 183101Google Scholar

    [17]

    吴永刚, 李世雄, 郝进欣, 徐梅, 孙光宇, 令狐荣锋 2015 物理学报 64 153102Google Scholar

    Wu Y G, Li S X, Hao J X, Xu M, Sun G Y, Linghu R F 2015 Acta Phys. Sin. 64 153102Google Scholar

    [18]

    李世雄, 张正平, 隆正文, 秦水介 2017 物理学报 66 103102Google Scholar

    Li S X, Zhang Z P, Long Z W, Qin S J 2017 Acta Phys. Sin. 66 103102Google Scholar

    [19]

    Wu D L, Tan B, Wan H J, Xie A D, Ding D J 2015 Chin. Phys. Lett. 32 073101Google Scholar

    [20]

    Haynes W M 2014 CRC Handbook of Chemistry and Physics (Cleveland: CRC Press) p9

    [21]

    Shimanouchi T 1977 J. Phys. Chem. Ref. Data 6 993Google Scholar

    [22]

    McDaniel A H, Cantrell C A, Davidson J A, Shetter R E, Calvert J G 1991 J. Atmos. Chem. 12 211Google Scholar

    [23]

    Nanes R, Silvaggio P M, Boese R W 1980 J. Quant. Spectrosc. Radiat. Transfer 23 211Google Scholar

  • 图 1  CFC-11分子的几何结构

    Fig. 1.  Equilibrium structure of CFC-11 molecule.

    图 2  键长随电场的变化

    Fig. 2.  Bond length variation with external electric field.

    图 3  偶极矩随电场的变化

    Fig. 3.  Dipole moment variation with external electric field.

    图 4  总能量随电场变化

    Fig. 4.  Total energy variation with external electric field.

    图 5  HOMO和LUMO能级随电场变化

    Fig. 5.  The HOMO and LUMO energy level variation with external electric field.

    图 6  能隙随电场变化

    Fig. 6.  Energy gap variation with external electric field.

    图 7  红外光谱随电场强度的变化 (a) –0.04 a.u.; (b) –0.03 a.u.; (c) –0.02 a.u.; (d) –0.01 a.u.; (e) a.u.; (f) 0.01 a.u.; (g) 0.02 a.u.; (h) 0.03 a.u.; (i) 0.04 a.u.

    Fig. 7.  Variation of the infrared intensities with external electric field: (a) –0.04 a.u.; (b) –0.03 a.u.; (c) –0.02 a.u.; (d) –0.01 a.u.; (e) 0 a.u.; (f) 0.01 a.u.; (h) 0.02 a.u.; (g) 0.03 a.u.; (i) 0.04 a.u..

    图 8  红外谱线242.99 cm–1随电场的变化 (a)反向电场; (b)正向电场

    Fig. 8.  Variation of infrared spectrum of 242.99 cm–1 with external electric field: (a) Negative electric field; (b) positive electric field.

    图 9  红外谱线802.40 cm–1随电场的变化 (a)反向电场; (b)正向电场

    Fig. 9.  Variation of infrared spectrum of 802.40 cm–1 with external electric field: (a) Negative electric field; (b) positive electric field.

    图 10  拉曼光谱随电场强度的变化 (a) –0.04 a.u.; (b) –0.03 a.u.; (c) –0.02 a.u.; (d) –0.01 a.u.; (e) 0 a.u.; (f) 0.01 a.u.; (g) 0.02 a.u.; (h) 0.03 a.u.; (i) 0.04 a.u.

    Fig. 10.  Variation of Raman spectrum with external electric field: (a) –0.04 a.u.; (b) –0.03 a.u.; (c) –0.02 a.u.; (d) –0.01 a.u.; (e) 0 a.u.; (f) 0.01 a.u.; (h) 0.02 a.u.; (g) 0.03 a.u.; (i) 0.04 a.u..

    图 11  拉曼谱394.42 cm–1随电场的变化 (a)反向电场; (b)正向电场

    Fig. 11.  Variation of Raman spectrum of 394.42 cm–1 with external electric field: (a) Negative electric field; (b) positive electric field.

    图 12  拉曼谱802.40 cm–1随电场的变化 (a)反向电场; (b)正向电场

    Fig. 12.  Variation of Raman spectrum of 802.40 cm–1 with external electric field: (a) Negative electric field; (b) positive electric field.

    图 13  反向电场下C—F键势能曲线

    Fig. 13.  Potential energy curve variation with negative electric field.

    图 14  正向电场下C—F键势能曲线

    Fig. 14.  Potential energy curve variation with positive electric field.

    表 1  不同电场下计算得到的CFC-11分子参数(1 hartree = 110.5 × 10–21 J)

    Table 1.  Calculated parameters of CFC-11 molecule under different external electric field.

    F/a.u. Re(C—F)/Å Re(C—Cl)/nm E/hartree $\mu$/Debye
    –0.04 1.2764 1.8118 –1518.7025 5.0491
    –0.03 1.2898 1.8010 –1518.6855 3.6168
    –0.02 1.3043 1.7916 –1518.6740 2.2462
    –0.01 1.3199 1.7830 –1518.6678 0.9145
    0.00 1.3385 1.7757 –1518.6668 0.4044
    0.01 1.3582 1.7692 –1518.6710 1.7191
    0.02 1.3825 1.7628 –1518.6803 3.0657
    0.03 1.4135 1.7563 –1518.6952 4.4805
    0.04 1.4587 1.7486 –1518.7158 6.0486
    下载: 导出CSV

    表 2  无电场时CFC-11分子的红外谱实验值与计算值

    Table 2.  Experiment data and calculated data of infrared spectrum for CFC-11 molecule without external electric field.

    Frequency 本文 实验值[21] 实验值[22] 实验值[23]
    f1/cm–1 1071.2887 1085 1085 1085
    f2/cm–1 526.5703 535 535
    f3/cm–1 347.5578 350 351
    f4/cm–1 802.3721, 802.4017 847 846 847
    f5/cm–1 394.9112, 394.9163 394 395
    f6/cm–1 242.9898, 242.9928 241 243
    下载: 导出CSV
  • [1]

    Stratford J 2002 Estimating CFC Releases from Cutting of Fridges (Scottish: Scottish Environment Protection Agency) p1

    [2]

    Molina M J, Rowland F S 1974 Nature 249 810Google Scholar

    [3]

    Farman J C, Gardiner B G, Shanklin J D 1985 Nature 315 207Google Scholar

    [4]

    Vollmer M K, Young D, Trudinger C M, Mühle J, Henne S, Rigby M, Park S, Li S, Guillevic M, Mitrevski B, Harth C M, Miller B R, Reimann S, Yao B, Steele L P, Wyss S A, Lunder C R, Arduini J, McCulloch A, Wu S H, Rhee T S, Wang R H J, Salameh P K, Hermansen O, Hill M, Langenfelds R L, Ivy D, O’Doherty S, Krummel P B , Maione M, Etheridge D M, Zhou L X, Fraser P J, Prinn R G, Weiss R F, Simmonds P G 2018 Atmos. Chem. Phys. 18 979Google Scholar

    [5]

    Schuck T J, Lefrancois F, Gallmann F, Wang D, Jesswein M, Hoker J, Bönisch H, Engel A 2018 Atmos. Chem. Phys. 18 16553Google Scholar

    [6]

    LeedhamElvidge E, Bönisch H, Brenninkmeijer C A, Engel A, Fraser P J, Gallacher E, Langenfelds R, Mühle J, Oram D E, Ray E A, Ridley A R, Röckmann T, Sturges W T, Weiss R F, Laube J C 2018 Atmos. Chem. Phys. 18 3369Google Scholar

    [7]

    Warner M J, Bullister J L, Wisegarver D P, Gammon R H, Weiss R F 1996 J. Geophys. Res. Oceans 101 20525Google Scholar

    [8]

    Willey D A, Fine R A, Sonnerup R E, Bullister J L, Smethie Jr W M, Warner M J 2004 Geophys. Res. Lett. 31 L01303Google Scholar

    [9]

    Font R, Fullana A, Caballero J A, Candela J, Garcıa A 2001 J. Anal. Appl. 58−59 63Google Scholar

    [10]

    Cullis C F, Hirschler M M 1981 The Combustion of Organic Polymers (London: Clarendon Press Oxford) p120

    [11]

    Lattimer R P, Williams R C 2002 J. Anal. Appl. Pyroly. 63 85Google Scholar

    [12]

    刘玉柱, 肖韶荣, 王俊锋, 何仲福, 邱学军, Gregor Knopp 2016 物理学报 65 113301Google Scholar

    Liu Y Z, Xiao S R Wang J F, He Z F, Qiu X J, Gregor K 2016 Acta Phys. Sin. 65 113301Google Scholar

    [13]

    侯健, 韩功元, 张振满, 潘循皙, 侯惠奇 1999 复旦学报 (自然科学版) 38 627

    Hou J, Han G Y, Zhang Z M, Pan X X, Hou H Q 1999 J. Fudan Univ. (Natural Science) 38 627

    [14]

    谢安东, 谢晶, 周玲玲, 伍冬兰, 阮文, 罗文浪 2016 原子与分子物理学报 33 989

    Xie A D, Xie J, Zhou L L, Wu D L, Ruan W, Luo W L 2016 Chin. J. Atom. Mol. Phys. 33 989

    [15]

    尹文怡, 刘玉柱, 林华, 李炳生, 秦朝朝 2018 光谱学与光谱分析 38 21

    Yin W Y, Liu Y Z, Lin H, Li B S, Qin C C 2018 Spectrosc. Spect. Anal. 38 21

    [16]

    李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成 2018 物理学报 67 183101Google Scholar

    Li Y S, Xie Y L, Huang T H, Xu C, Liu G C 2018 Acta Phys. Sin. 67 183101Google Scholar

    [17]

    吴永刚, 李世雄, 郝进欣, 徐梅, 孙光宇, 令狐荣锋 2015 物理学报 64 153102Google Scholar

    Wu Y G, Li S X, Hao J X, Xu M, Sun G Y, Linghu R F 2015 Acta Phys. Sin. 64 153102Google Scholar

    [18]

    李世雄, 张正平, 隆正文, 秦水介 2017 物理学报 66 103102Google Scholar

    Li S X, Zhang Z P, Long Z W, Qin S J 2017 Acta Phys. Sin. 66 103102Google Scholar

    [19]

    Wu D L, Tan B, Wan H J, Xie A D, Ding D J 2015 Chin. Phys. Lett. 32 073101Google Scholar

    [20]

    Haynes W M 2014 CRC Handbook of Chemistry and Physics (Cleveland: CRC Press) p9

    [21]

    Shimanouchi T 1977 J. Phys. Chem. Ref. Data 6 993Google Scholar

    [22]

    McDaniel A H, Cantrell C A, Davidson J A, Shetter R E, Calvert J G 1991 J. Atmos. Chem. 12 211Google Scholar

    [23]

    Nanes R, Silvaggio P M, Boese R W 1980 J. Quant. Spectrosc. Radiat. Transfer 23 211Google Scholar

  • [1] 邢容, 谢双媛, 许静平, 羊亚平. 动态光子晶体环境下二能级原子自发辐射场及频谱的特性. 物理学报, 2016, 65(19): 194204. doi: 10.7498/aps.65.194204
    [2] 张秀荣, 李扬, 尹琳, 王杨杨. WnNim (n+m=8)团簇的极性和光谱性质的理论研究. 物理学报, 2013, 62(2): 023601. doi: 10.7498/aps.62.023601
    [3] 张秀荣, 吴礼清, 饶倩. (OsnN)0,(n=16)团簇电子结构与光谱性质的理论研究. 物理学报, 2011, 60(8): 083601. doi: 10.7498/aps.60.083601
    [4] 张秀荣, 高从花, 吴礼清, 唐会帅. WnNim(n+m≤7; m=1, 2)团簇电子结构与光谱性质的理论研究. 物理学报, 2010, 59(8): 5429-5438. doi: 10.7498/aps.59.5429
    [5] 贾相华, 吕树臣. Er3+及Er3+/Yb3+共掺铋酸盐玻璃光谱性质研究. 物理学报, 2007, 56(8): 4971-4976. doi: 10.7498/aps.56.4971
    [6] 钱 奇, 王 琰, 张勤远, 杨中民, 杨钢锋, 姜中宏. 可紫外激光刻写的掺铒铋硅酸盐玻璃光谱性质研究. 物理学报, 2007, 56(5): 2736-2741. doi: 10.7498/aps.56.2736
    [7] 乔延波, 达 宁, 陈丹平, 邱建荣. 钕离子掺杂和钕铝共掺高硅氧玻璃的光谱性质研究. 物理学报, 2007, 56(12): 7023-7028. doi: 10.7498/aps.56.7023
    [8] 杨秋红, 曾智江, 徐 军, 苏良碧. Mg,Ti共掺Al2O3透明多晶陶瓷光谱性能研究. 物理学报, 2006, 55(6): 2726-2729. doi: 10.7498/aps.55.2726
    [9] 李 涛, 张勤远, 姜中宏. Ce3+对Er3+/Yb3+共掺氟磷酸盐玻璃光谱性质的影响. 物理学报, 2006, 55(8): 4298-4303. doi: 10.7498/aps.55.4298
    [10] 黄仙山, 谢双媛, 羊亚平. 各向异性光子晶体中Λ型原子的自发辐射性质. 物理学报, 2006, 55(2): 696-703. doi: 10.7498/aps.55.696
    [11] 曾智江, 杨秋红, 徐 军. Cr3+:Al2O3透明多晶陶瓷光谱特性分析. 物理学报, 2005, 54(11): 5445-5449. doi: 10.7498/aps.54.5445
    [12] 刘粤惠, 陈东丹, 侯志远, 陈 鹤, 张勤远, 邓再德, 姜中宏. 977nm抽运下掺铒碲酸盐基氧卤玻璃的光谱特性. 物理学报, 2005, 54(1): 422-428. doi: 10.7498/aps.54.422
    [13] 沈 祥, 聂秋华, 徐铁峰, 高 媛. Er3+/Yb3+共掺碲钨酸盐玻璃的光谱性质和热稳定性的研究. 物理学报, 2005, 54(5): 2379-2384. doi: 10.7498/aps.54.2379
    [14] 陈炳炎, 刘粤惠, 陈东丹, 姜中宏. 一种新型掺铒碲酸盐玻璃的光谱性质研究. 物理学报, 2005, 54(5): 2374-2378. doi: 10.7498/aps.54.2374
    [15] 李 涛, 张勤远, 冯洲明, 赵 纯, 姜中宏. 碱金属和碱土金属氟化物对掺Er3+氟磷酸盐玻璃光谱性质的影响. 物理学报, 2005, 54(10): 4926-4932. doi: 10.7498/aps.54.4926
    [16] 马红萍, 徐时清, 姜中宏. 掺铒重金属氧氟硅铋酸盐玻璃的光谱性质. 物理学报, 2004, 53(5): 1378-1383. doi: 10.7498/aps.53.1378
    [17] 杨建虎, 戴世勋, 温 磊, 柳祝平, 胡丽丽, 姜中宏. 掺铒铋酸盐玻璃的光谱性质和热稳定性研究. 物理学报, 2003, 52(2): 508-514. doi: 10.7498/aps.52.508
    [18] 郝建红, 丁 武. 行波管放大器中辐射场的极限环振荡和混沌. 物理学报, 2003, 52(4): 906-910. doi: 10.7498/aps.52.906
    [19] 柳祝平, 胡丽丽, 张德宝, 戴世勋, 祁长鸿, 姜中宏. Yb3+,Er3+离子共掺磷酸盐铒玻璃的Judd-Ofelt光谱参数与光谱性质. 物理学报, 2002, 51(11): 2629-2634. doi: 10.7498/aps.51.2629
    [20] 卫青, 王奇, 施解龙, 陈园园. 孤子和辐射场的非线性相互作用. 物理学报, 2002, 51(1): 99-103. doi: 10.7498/aps.51.99
计量
  • 文章访问数:  8628
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-01
  • 修回日期:  2019-01-07
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-20

/

返回文章
返回