搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于瀑布型多重网格加速的复指数波前复原算法

赵旺 董理治 杨平 王帅 许冰

引用本文:
Citation:

基于瀑布型多重网格加速的复指数波前复原算法

赵旺, 董理治, 杨平, 王帅, 许冰

Complex exponential reconstruction algorithm accelerated by cascadic multigrid method

Zhao Wang, Dong Li-Zhi, Yang Ping, Wang Shuai, Xu Bing
PDF
HTML
导出引用
  • 激光在大气中传输时, 由于强湍流或长传输距离的影响, 畸变波前中出现由相位起点组成的不连续相位,现有波前复原算法不能有效复原不连续相位, 使得自适应光学系统校正效果下降甚至失效. 本文分析了最小二乘波前复原算法不能复原相位奇点的原因, 提出了基于瀑布型多重网格加速的复指数波前复原算法, 给出了复指数波前复原算法中迭代计算、降采样、插值计算的实现方式. 研究了该方法对不连续相位和随机连续相位的复原能力, 数值分析了采用复指数波前复原算法的自适应光学系统对大气湍流像差的校正效果. 仿真结果表明, 同等复原精度下, 相比直接迭代过程, 该方法所需浮点乘数目减少了近2个数量级, 且随着夏克-哈特曼波前传感器子孔径数目增加, 其在计算量上的优势更加明显. Rytov方差较大时, 相比直接斜率法, 自适应光学系统采用复指数波前复原算法后校正光束Strehl比提升1倍.
    When laser beam propagates through the turbulent atmosphere, there are branch points in wavefront, which are caused by deep turbulence or long propagation distance. Conventional least-square reconstruction algorithms cannot restore the discontinuous wavefront, which severely limits correction performance of an adaptive optics system. If the incoming wavefront contains a branch cut, there is $ {\rm{2}}n{\text{π}} $ difference between the measured phase difference and the principle phase difference, which is the reason why conventional least-square reconstruction algorithms cannot reconstruct wavefront with branch points. The complex exponential reconstructor is developed to restore the discontinuous wavefront with phase difference replaced by complex exponents. However, thousands of iterations are required by the complex exponential reconstructor before converging to an acceptable solution. In order to speed up the iterative calculation, the cascadic multigrid method (CMG) is introduced in the process of wavefront reconstruction. The proposed method can be used to restore discontinuous wavefront with lower residual error similar to those reconstructed by the direct iteration. The number of float point multiplications required by the CMG method is nearly 2 orders of magnitude lower than that required by the direct iteration. The acceleration of the CMG method increases with the number of subapertures increasing. The performance of CMG method to recover continuous wavefront is also investigated and compared with conventional wavefront reconstruction algorithm based on successive over-relaxation. It is shown that the CMG method has good capability for wavefront reconstruction with high precision and low computation cost no matter whether it is applied to discontinuous or continuous wavefront. Furthermore, the CMG method is used in the adaptive optics for correcting the turbulence aberration. The direct slope wavefront reconstruction algorithm based on the assumption that the measured slope and the control voltage satisfy the linear relationship cannot restore the wavefront with branch points. As a result, the adaptive optics system with the CMG method doubles the correction quality evaluated by the Strehl ratio compared with that with the direct slope wavefront reconstruction algorithm.
      通信作者: 王帅, wangshuai@ioe.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 61875203)、国家自然科学基金青年科学基金(批准号: 11704382, 61805251)和国家自然科学基金国际(地区)合作与交流项目(批准号: 1171101412)资助的课题.
      Corresponding author: Wang Shuai, wangshuai@ioe.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61875203), the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11704382, 61805251), and the International (Regional) Cooperation and Exchange Program of the National Natural Science Foundation of China (Grant No. 1171101412).
    [1]

    Fried D L, Vaughn J L 1992 Appl. Opt. 31 2865Google Scholar

    [2]

    Fried D L 1998 JOSA A 15 2759Google Scholar

    [3]

    Primmerman C A, Price T R, Humphreys R A, et al. 1995 Appl. Opt. 34 2081Google Scholar

    [4]

    Lukin V P, Fortes B V 2002 Appl. Opt. 41 5616Google Scholar

    [5]

    Steinbock M J, Hyde M W, Schmidt J D 2014 Appl. Opt. 53 3821Google Scholar

    [6]

    Le B E, Wild W J, Kibblewhite E J 1998 Opt. Lett. 23 10Google Scholar

    [7]

    Fried D L 2001 Opt. Commun. 200 43Google Scholar

    [8]

    Barchers J D, Fried D L, Link D J 2002 Appl. Opt. 41 1012Google Scholar

    [9]

    Aubailly M, Vorontsov M A 2012 JOSA A 29 1707

    [10]

    Yazdani R, Fallah H 2017 Appl. Opt. 56 1358Google Scholar

    [11]

    Goodman J W ( translated by Qin K C, L P S, Chen J B, Cao Q Z) 2013 Introduction to Fourier Optics (3rd Ed.) (Beijing: Publishing House of Electronics Industry) p77

    [12]

    Hudgin R H 1977 JOSA 67 378Google Scholar

    [13]

    Hudgin R H 1977 JOSA 67 375Google Scholar

    [14]

    Bornemann F A, Deuflhard P 1996 Numerische Mathematik 75 135Google Scholar

    [15]

    Venema T M, Schmidt J D 2008 Opt. Express 16 6985Google Scholar

    [16]

    Steinbock M J, Schmidt J D, Hyde M W 2012 Aerospace Conference Big Sky, MT, USA, 3-10 March, 2012, pp1-13

    [17]

    Roddier N A 1990 Opt. Eng. 29 1174Google Scholar

    [18]

    Southwell W H 1980 JOSA 70 998Google Scholar

    [19]

    Jr J A F, Morris J R, Feit M D 1976 Appl. Phys. 10 129

    [20]

    蔡冬梅, 王昆, 贾鹏, 王东, 刘建霞 2014 物理学报 63 104217Google Scholar

    Cai D M, Wang K, Jia P, Wang D, Liu J X 2014 Acta Phys. Sin. 63 104217Google Scholar

    [21]

    程生毅, 陈善球, 董理治, 王帅, 杨平, 敖明武, 许冰 2015 物理学报 64 094207Google Scholar

    Cheng Y C, Shan Q C, Dong L Z, Wang S, Yang P, Ao M W, Xu B 2015 Acta Phys. Sin. 64 094207Google Scholar

    [22]

    Fan C, Wang Y, Gong Z 2004 Appl. Opt. 43 4334Google Scholar

  • 图 1  测量相位差和重建相位点的关系

    Fig. 1.  The relationship between phase differences and phase.

    图 2  瀑布型多重网格法示意图 (a)网格结构; (b)CMG算法计算流程

    Fig. 2.  Schematic of the CMG method: (a) Structure of network layers; (b) calculation process.

    图 3  CMG算法降采样过程 (a)细网格上光场; (b)粗网格上光场

    Fig. 3.  Downsampling process of the CMG method: (a) Data on the fine network; (b) data on the coarse network.

    图 4  CMG算法插值过程 (a)细网格光场和粗网格光场的关系; (b)待插值数据位于正方形中心; (c), (d)待插值数据位于正方形四边上

    Fig. 4.  Interpolation process of the CMG method: (a) The relationship between grid points on coarse network and fine network; (b) the new grid point located at the center of the unit square; (c), (d) the new grid point located on the edge of the unit square.

    图 5  (a)−(d) Phase1, Phase2, Phase3和Phase4二维分布; (e)−(h)最小二乘法波前复原结果; (i)−(l)复指数波前复原算法结果

    Fig. 5.  (a)−(d) Two-dimensional distribution of Phase1, Phase2, Phase3 and Phase4; (e)−(h) wavefront reconstructed by the least-squares reconstruction algorithm; (i)−(l) wavefront reconstructed by the CER algorithm.

    图 6  直接迭代和CMG算法波前复原残差 (a)子孔径数目为20 × 20; (b)子孔径数目为40 × 40; (c)子孔径数目为80 × 80

    Fig. 6.  Wavefront residual error of the direct iteration method and the CMG method, the number of subapertures is (a) 20 × 20; (b) 40 × 40; (c) 80 × 80.

    图 7  CMG算法和直接迭代过程所需浮点乘运算数目(a)子孔径数目为20 × 20; (b)子孔径数目为40 × 40; (c)子孔径数目为80 × 80

    Fig. 7.  Float point multiplications required by the CMG method and the process of the direct iteration the number of subapertures is (a) 20 × 20; (b) 40 × 40; (c) 80 × 80.

    图 8  CMG算法和SOR算法波前复原残差统计结果

    Fig. 8.  Wavefront residual statistics of the CMG method and SOR method.

    图 9  变形镜驱动器和哈特曼波前传感器子孔径匹配关系

    Fig. 9.  Matching relation between actuators of deformable mirror and subapertures of Shack-Hartmann sensor.

    图 10  不同Rytov方差时, 自适应光学系统校正前后远场光强分布及其峰值Strehl比

    Fig. 10.  Far field intensity and Strehl ratio of laser beam before and after corrected by the adaptive optics system.

    图 11  不同Rytov方差时, 自适应光学系统校正光束Strehl比

    Fig. 11.  Strehl ratio of laser beam after corrected by the adaptive optics system in different Rytov number.

    表 1  直接迭代和CMG算法波前复原时间(单位: s)

    Table 1.  Time required by the direct iteration and CMG method (in s).

    子孔径数目20 × 20子孔径数目40 × 40子孔径数目80 × 80
    直接迭代CMG算法 直接迭代CMG算法 直接迭代CMG算法
    Phase14.2610.08167.390.27114000.920
    Phase25.1120.11977.610.31921340.852
    Phase34.1840.10354.560.51914241.339
    Phase41.8910.09718.430.494370.81.308
    下载: 导出CSV
  • [1]

    Fried D L, Vaughn J L 1992 Appl. Opt. 31 2865Google Scholar

    [2]

    Fried D L 1998 JOSA A 15 2759Google Scholar

    [3]

    Primmerman C A, Price T R, Humphreys R A, et al. 1995 Appl. Opt. 34 2081Google Scholar

    [4]

    Lukin V P, Fortes B V 2002 Appl. Opt. 41 5616Google Scholar

    [5]

    Steinbock M J, Hyde M W, Schmidt J D 2014 Appl. Opt. 53 3821Google Scholar

    [6]

    Le B E, Wild W J, Kibblewhite E J 1998 Opt. Lett. 23 10Google Scholar

    [7]

    Fried D L 2001 Opt. Commun. 200 43Google Scholar

    [8]

    Barchers J D, Fried D L, Link D J 2002 Appl. Opt. 41 1012Google Scholar

    [9]

    Aubailly M, Vorontsov M A 2012 JOSA A 29 1707

    [10]

    Yazdani R, Fallah H 2017 Appl. Opt. 56 1358Google Scholar

    [11]

    Goodman J W ( translated by Qin K C, L P S, Chen J B, Cao Q Z) 2013 Introduction to Fourier Optics (3rd Ed.) (Beijing: Publishing House of Electronics Industry) p77

    [12]

    Hudgin R H 1977 JOSA 67 378Google Scholar

    [13]

    Hudgin R H 1977 JOSA 67 375Google Scholar

    [14]

    Bornemann F A, Deuflhard P 1996 Numerische Mathematik 75 135Google Scholar

    [15]

    Venema T M, Schmidt J D 2008 Opt. Express 16 6985Google Scholar

    [16]

    Steinbock M J, Schmidt J D, Hyde M W 2012 Aerospace Conference Big Sky, MT, USA, 3-10 March, 2012, pp1-13

    [17]

    Roddier N A 1990 Opt. Eng. 29 1174Google Scholar

    [18]

    Southwell W H 1980 JOSA 70 998Google Scholar

    [19]

    Jr J A F, Morris J R, Feit M D 1976 Appl. Phys. 10 129

    [20]

    蔡冬梅, 王昆, 贾鹏, 王东, 刘建霞 2014 物理学报 63 104217Google Scholar

    Cai D M, Wang K, Jia P, Wang D, Liu J X 2014 Acta Phys. Sin. 63 104217Google Scholar

    [21]

    程生毅, 陈善球, 董理治, 王帅, 杨平, 敖明武, 许冰 2015 物理学报 64 094207Google Scholar

    Cheng Y C, Shan Q C, Dong L Z, Wang S, Yang P, Ao M W, Xu B 2015 Acta Phys. Sin. 64 094207Google Scholar

    [22]

    Fan C, Wang Y, Gong Z 2004 Appl. Opt. 43 4334Google Scholar

  • [1] 赵婷, 宫毛毛, 张松斌. 氦原子贝塞尔涡旋光电离的理论研究. 物理学报, 2024, 73(24): . doi: 10.7498/aps.73.20241378
    [2] 陈克乐, 周家辉, 韩文雨, 饶学军, 郭友明, 饶长辉. 自适应光学系统最优模式增益的快速估计方法. 物理学报, 2023, 72(13): 139502. doi: 10.7498/aps.72.20230290
    [3] 何婷, 田博宇, 邱蝶, 张彬. 基于直角锥面变形镜的薄管激光光束质量提升新方法. 物理学报, 2021, 70(17): 179501. doi: 10.7498/aps.70.20210603
    [4] 张艳艳, 陈苏婷, 葛俊祥, 万发雨, 梅永, 周晓彦. 自适应非凸稀疏正则化下自适应光学系统加性噪声的去除. 物理学报, 2017, 66(12): 129501. doi: 10.7498/aps.66.129501
    [5] 刘章文, 李正东, 周志强, 袁学文. 基于模糊控制的自适应光学校正技术. 物理学报, 2016, 65(1): 014206. doi: 10.7498/aps.65.014206
    [6] 唐艳秋, 孙强, 赵建, 姚凯男. 一种基于全息术的光学系统闭环像差补偿方法. 物理学报, 2015, 64(2): 024206. doi: 10.7498/aps.64.024206
    [7] 郭友明, 饶长辉, 鲍华, 张昂, 魏凯. 一种自适应光学系统响应矩阵的直接计算方法. 物理学报, 2014, 63(14): 149501. doi: 10.7498/aps.63.149501
    [8] 郭友明, 马晓燠, 饶长辉. 自适应光学系统倾斜校正回路的最优闭环带宽. 物理学报, 2014, 63(6): 069502. doi: 10.7498/aps.63.069502
    [9] 王宇煜, 高妍琦, 朱海东, 卢兴华, 张军勇, 郭亚晶, 惠宏超, 朱宝强. 包含波面校正的四程放大系统的准直问题研究. 物理学报, 2013, 62(5): 055201. doi: 10.7498/aps.62.055201
    [10] 刘超, 胡立发, 穆全全, 曹召良, 胡红斌, 张杏云, 芦永军, 宣丽. 用于开环液晶自适应光学系统的模式预测技术研究. 物理学报, 2012, 61(12): 129501. doi: 10.7498/aps.61.129501
    [11] 刘超, 胡立发, 曹召良, 穆全全, 彭增辉, 宣丽. 快速响应的硅基纯相位液晶器件对动态大气湍流波前的校正能力研究. 物理学报, 2012, 61(8): 089501. doi: 10.7498/aps.61.089501
    [12] 简小华, 崔崤峣, 向永嘉, 韩志乐. 自适应多光谱光声成像技术研究. 物理学报, 2012, 61(21): 217801. doi: 10.7498/aps.61.217801
    [13] 卢婧, 李昊, 何毅, 史国华, 张雨东. 超分辨率活体人眼视网膜共焦扫描成像系统. 物理学报, 2011, 60(3): 034207. doi: 10.7498/aps.60.034207
    [14] 王建新, 白福忠, 宁禹, 黄林海, 姜文汉. 无调制两面锥波前传感器的衍射理论分析和数值仿真. 物理学报, 2011, 60(2): 029501. doi: 10.7498/aps.60.029501
    [15] 张艳艳, 饶长辉, 李梅, 马晓燠. 基于电子倍增电荷耦合器件的哈特曼-夏克波前传感器质心探测误差分析. 物理学报, 2010, 59(8): 5904-5913. doi: 10.7498/aps.59.5904
    [16] 白福忠, 饶长辉. 针孔直径对自参考干涉波前传感器测量精度的影响. 物理学报, 2010, 59(6): 4056-4064. doi: 10.7498/aps.59.4056
    [17] 白福忠, 饶长辉. 自参考干涉波前传感器中针孔直径对闭环自适应光学系统校正精度的影响. 物理学报, 2010, 59(11): 8280-8286. doi: 10.7498/aps.59.8280
    [18] 宁禹, 余浩, 周虹, 饶长辉, 姜文汉. 20单元双压电片变形镜的性能测试与闭环校正实验研究. 物理学报, 2009, 58(7): 4717-4723. doi: 10.7498/aps.58.4717
    [19] 蔡冬梅, 凌 宁, 姜文汉. 纯相位液晶空间光调制器拟合泽尼克像差性能分析. 物理学报, 2008, 57(2): 897-903. doi: 10.7498/aps.57.897
    [20] 李超宏, 鲜 浩, 姜文汉, 饶长辉. 用于白天自适应光学的波前探测方法分析. 物理学报, 2007, 56(7): 4289-4296. doi: 10.7498/aps.56.4289
计量
  • 文章访问数:  7104
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-05
  • 修回日期:  2019-02-22
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-20

/

返回文章
返回