搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类扰动Kadomtsev-Petviashvili方程的雅可比椭圆函数解的收敛性探讨

焦小玉 贾曼 安红利

引用本文:
Citation:

一类扰动Kadomtsev-Petviashvili方程的雅可比椭圆函数解的收敛性探讨

焦小玉, 贾曼, 安红利

Convergence for Jacobi elliptic function series solutions to one kind of perturbed Kadomtsev-Petviashvili equations

Jiao Xiao-Yu, Jia Man, An Hong-Li
PDF
HTML
导出引用
  • 为构造一类扰动Kadomtsev-Petviashvili (KP)方程的级数解, 利用同伦近似对称法求出三种情形下具有通式形式的相似解以及相应的相似方程. 而且, 对于第三种情形下的前几个相似方程, 雅可比椭圆函数解亦遵循共同的表达式, 这可以产生形式紧凑的级数解, 从而为收敛性的探讨提供便利: 首先, 对于扰动KP方程的微扰项, 给定$u$关于变量$y$的导数阶数$n$, 若$n\leqslant 1$ ($n\geqslant 3$), 则减小(增大)$|a/b|$致使收敛性改善; 其次, 减小$\varepsilon$, $|\theta-1|$以及$|c|$均有助于改进收敛性. 在更一般情形下, 仅当微扰项的导数阶数为偶数时, 扰动KP方程才存在雅可比椭圆函数解.
    This paper is devoted to constructing series solutions to one kind of perturbed Kadomtsev-Petviashvili (KP) equations, of which the perturbation terms are of all six-order derivatives of space variable $x$ and $y$. First, by making the series solutions expansion with respect to the homotopy parameter $q$, the homotopy model of the perturbed KP equations can be decomposed into infinite number of approximate equations of the general form. Second, Lie symmetry method is applied to these approximate equations to achieve similarity solutions and the related similarity equations with common formulae in three cases. Third, for the first few similarity equations in the third case, Jacobi elliptic function solutions are constructed through a step-by-step procedure and are also subject to common formulae for each equation of the whole kind of perturbed KP equations. Finally, one kind of compact series solutions for the original perturbed KP equations is obtained from these Jacobi elliptic function solutions. The convergence of these series solution is dependent on perturbation parameter $\epsilon$, auxiliary parameter $\theta$ and arbitrary constants $\{a, b, c\}$, among which the most prominent is decreasing arbitrary constant $c$ or perturbation parameter $\varepsilon$. For the perturbation term in perturbed KP equations, given the derivative order $n$ of $u$ with respect to $y$, smaller (greater) $|a/b|$ causes the improved convergence provided $n\leqslant 1$ ($n\geqslant 3$). Nonetheless, the decrease of arbitrary constant $|c|$ or $|a/b|$ leads to the enlargement of period in a certain direction and thus should be specified appropriately. This paper also considers the perturbed KP equations with more general perturbation terms. Only if the derivative order of the perturbation term is an even number, do Jacobi elliptic function series solutions exist for perturbed KP equations. The existence of series solutions can serve as a criterion of solvability for perturbed equations.
      通信作者: 焦小玉, jiaoxiaoyu@nufe.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11505094, 11775116)和江苏省自然科学基金(批准号: BK20150984)资助的课题.
      Corresponding author: Jiao Xiao-Yu, jiaoxiaoyu@nufe.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11505094, 11775116) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20150984).
    [1]

    Cole J D 1968 Perturbation Methods in Applied Mathematics (Waltham: Blaisdell)

    [2]

    Van Dyke M 1975 Perturbation Methods in Fluid Mechanics (Stanford: Parabolic Press)

    [3]

    Bluman G W, Kumei S 1989 Symmetries and Differential Equations (Berlin: Springer)

    [4]

    Olver P J 1993 Applications of Lie Group to Differential Equations (2nd ed.) (New York: Springer)

    [5]

    Bluman G W, Cole J D 1969 J. Math. Mech. 18 1025

    [6]

    Clarkson P A, Kruskal M D 1989 J. Math. Phys. 30 2201Google Scholar

    [7]

    Lou S Y, Ma H C 2005 J. Phys. A, Math. Gen. 38 L129Google Scholar

    [8]

    Lou S Y, Jia M, Tand X Y, Huang F 2007 Phys. Rev. E 75 056318Google Scholar

    [9]

    Lou S Y, Hu X R, Chen Y 2012 J. Phys. A: Math. Theor. 45 155209Google Scholar

    [10]

    Cheng X P, Lou S Y, Chen C L, Tang X Y 2014 Phys. Rev. E 89 043202Google Scholar

    [11]

    Chen J C, Xin X P, Chen Y 2014 J. Math. Phys. 55 053508Google Scholar

    [12]

    Baikov V A, Gazizov R K, Ibragimov N H 1988 Mat. Sb. 136 435(English Transl. in 1989 Math. USSR Sb. 64 427)

    [13]

    Fushchich W I, Shtelen W M 1989 J. Phys. A: Math. Gen. 22 L887Google Scholar

    [14]

    Pakdemirli M, Yurusoy M, Dolapci I T 2004 Acta Appl. Math. 80 243Google Scholar

    [15]

    Wiltshire R 2006 J. Comput. Appl. Math. 197 287Google Scholar

    [16]

    Jiao X Y, Yao R X, Lou S Y 2008 J. Math. Phys. 49 093505Google Scholar

    [17]

    Jia M, Wang J Y, Lou S Y 2009 Chin. Phys. Lett. 26 020201Google Scholar

    [18]

    Jiao X Y 2018 Chin. Phys. B 27 100202Google Scholar

    [19]

    Liao S J 1999 Int. J. Non-Linear Mech. 34 759Google Scholar

    [20]

    Liao S J 1999 Int. J. Non-linear Dynam. 19 93Google Scholar

    [21]

    Liao S J 2002 J. Fluid Mech. 453 411Google Scholar

    [22]

    Lyapunov A M 1992 General Problem on Stability of Motion (English translation) (London: Taylor and Francis) p29

    [23]

    Karmishin A V, Zhukov A I, Kolosov V G 1990 Methods of Dynamics Calculation and Testing for Thin Walled Structures (Moscow: Mashinostroyenie) (in Russian) p52

    [24]

    Adomian G 1994 Solving Frontier Problems of Physics: The Decomposition Method (Boston and London: Kluwer Academic Publishers)

    [25]

    焦小玉, 高原, 楼森岳 2009 中国科学 G辑: 物理学 力学 天文学 39 964

    Jiao X Y, Gao Y, Lou S Y 2009 Sci. China Ser. G. Phys. Mech. Astron. 39 964

    [26]

    Jiao X Y, Yao R X, Lou S Y 2009 Chin. Phys. Lett. 26 040202Google Scholar

    [27]

    Kadomtsev B B, Petviashvili V I 1970 Sov. Phys.: Dokl. 15 539

    [28]

    Lou S Y 2015 Stud. Appl. Math. 134 372Google Scholar

  • 图 1  n = 1, α = 1, h(t) = t, m = 0.5, c = 1, ε = 0.1, a = 2b并且t = 0, y = 0时, 截断级数解$\sum\nolimits_{i = 0}^k {{u_k}\left( {k = 0,1,2,3} \right)} $的截线图

    Fig. 1.  Transversals of truncated series solution $\sum\nolimits_{i = 0}^k {{u_k}} $ for $\left( {k = 0,1,2,3} \right)$ when n = 1, α = 1, h(t) = t, m = 0.5, c = 1, ε = 0.1, a = 2b and t = 0, y = 0

    图 4  n = 3, α = 1, h(t) = t, m = 0.5, c = 1, ε = 0.1, a = b/2并且t = 0, y = 0时, 截断级数解$\sum\nolimits_{i = 0}^k {{u_k}\left( {k = 0,1,2,3} \right)}$的截线图

    Fig. 4.  Transversals of truncated series solution $\sum\nolimits_{i = 0}^k {{u_k}}$ for $\left( {k = 0,1,2,3} \right)$ when n = 3, α = 1, h(t) = t, m = 0.5, c = 1, ε = 0.1, a = b/2 and t = 0, y = 0

    图 2  n = 1, α = 1, h(t) = t, m = 0.5, c = 1, ε = 0.1, a = b/2并且t = 0, y = 0时, 截断级数解$\sum\nolimits_{i = 0}^k {{u_k}\left( {k = 0,1,2,3} \right)} $的截线图

    Fig. 2.  Transversals of truncated series solution $\sum\nolimits_{i = 0}^k {{u_k}}$ for $\left( {k = 0,1,2,3} \right)$ when n = 1, α = 1, h(t) = t, m = 0.5, c = 1, ε = 0.1, a = b/2 and t = 0, y = 0

    图 3  n = 3, α = 1, h(t) = t, m = 0.5, c = 1, ε = 0.1, a = 2b并且t = 0, y = 0时, 截断级数解$\sum\nolimits_{i = 0}^k {{u_k}\left( {k = 0,1,2,3} \right)}$的截线图

    Fig. 3.  Transversals of truncated series solution $\sum\nolimits_{i = 0}^k {{u_k}}$ for $\left( {k = 0,1,2,3} \right)$ when n = 3, α = 1, h(t) = t, m = 0.5, c = 1, ε = 0.1, a = 2b and t = 0, y = 0

  • [1]

    Cole J D 1968 Perturbation Methods in Applied Mathematics (Waltham: Blaisdell)

    [2]

    Van Dyke M 1975 Perturbation Methods in Fluid Mechanics (Stanford: Parabolic Press)

    [3]

    Bluman G W, Kumei S 1989 Symmetries and Differential Equations (Berlin: Springer)

    [4]

    Olver P J 1993 Applications of Lie Group to Differential Equations (2nd ed.) (New York: Springer)

    [5]

    Bluman G W, Cole J D 1969 J. Math. Mech. 18 1025

    [6]

    Clarkson P A, Kruskal M D 1989 J. Math. Phys. 30 2201Google Scholar

    [7]

    Lou S Y, Ma H C 2005 J. Phys. A, Math. Gen. 38 L129Google Scholar

    [8]

    Lou S Y, Jia M, Tand X Y, Huang F 2007 Phys. Rev. E 75 056318Google Scholar

    [9]

    Lou S Y, Hu X R, Chen Y 2012 J. Phys. A: Math. Theor. 45 155209Google Scholar

    [10]

    Cheng X P, Lou S Y, Chen C L, Tang X Y 2014 Phys. Rev. E 89 043202Google Scholar

    [11]

    Chen J C, Xin X P, Chen Y 2014 J. Math. Phys. 55 053508Google Scholar

    [12]

    Baikov V A, Gazizov R K, Ibragimov N H 1988 Mat. Sb. 136 435(English Transl. in 1989 Math. USSR Sb. 64 427)

    [13]

    Fushchich W I, Shtelen W M 1989 J. Phys. A: Math. Gen. 22 L887Google Scholar

    [14]

    Pakdemirli M, Yurusoy M, Dolapci I T 2004 Acta Appl. Math. 80 243Google Scholar

    [15]

    Wiltshire R 2006 J. Comput. Appl. Math. 197 287Google Scholar

    [16]

    Jiao X Y, Yao R X, Lou S Y 2008 J. Math. Phys. 49 093505Google Scholar

    [17]

    Jia M, Wang J Y, Lou S Y 2009 Chin. Phys. Lett. 26 020201Google Scholar

    [18]

    Jiao X Y 2018 Chin. Phys. B 27 100202Google Scholar

    [19]

    Liao S J 1999 Int. J. Non-Linear Mech. 34 759Google Scholar

    [20]

    Liao S J 1999 Int. J. Non-linear Dynam. 19 93Google Scholar

    [21]

    Liao S J 2002 J. Fluid Mech. 453 411Google Scholar

    [22]

    Lyapunov A M 1992 General Problem on Stability of Motion (English translation) (London: Taylor and Francis) p29

    [23]

    Karmishin A V, Zhukov A I, Kolosov V G 1990 Methods of Dynamics Calculation and Testing for Thin Walled Structures (Moscow: Mashinostroyenie) (in Russian) p52

    [24]

    Adomian G 1994 Solving Frontier Problems of Physics: The Decomposition Method (Boston and London: Kluwer Academic Publishers)

    [25]

    焦小玉, 高原, 楼森岳 2009 中国科学 G辑: 物理学 力学 天文学 39 964

    Jiao X Y, Gao Y, Lou S Y 2009 Sci. China Ser. G. Phys. Mech. Astron. 39 964

    [26]

    Jiao X Y, Yao R X, Lou S Y 2009 Chin. Phys. Lett. 26 040202Google Scholar

    [27]

    Kadomtsev B B, Petviashvili V I 1970 Sov. Phys.: Dokl. 15 539

    [28]

    Lou S Y 2015 Stud. Appl. Math. 134 372Google Scholar

  • [1] 刘博, 邢朴, 丁松, 谢明军, 冯林, 时晓天. 一种新的可计算可压缩流动的预处理方法. 物理学报, 2022, 71(12): 124701. doi: 10.7498/aps.71.20220102
    [2] 张解放, 金美贞, 胡文成. 非自治Kadomtsev-Petviashvili方程的自相似变换和二维怪波构造. 物理学报, 2020, 69(24): 244205. doi: 10.7498/aps.69.20200981
    [3] 洪宝剑, 卢殿臣. 一类广义扰动KdV-Burgers方程的同伦近似解. 物理学报, 2013, 62(17): 170202. doi: 10.7498/aps.62.170202
    [4] 朱倩, 商学利, 陈文振. 六组点堆中子动力学方程组的同伦分析解. 物理学报, 2012, 61(7): 070201. doi: 10.7498/aps.61.070201
    [5] 柴争义, 刘芳, 朱思峰. 混沌量子克隆优化求解认知无线网络决策引擎. 物理学报, 2012, 61(2): 028801. doi: 10.7498/aps.61.028801
    [6] 吴钦宽. 输电线非线性振动问题的同伦映射近似解. 物理学报, 2011, 60(6): 068802. doi: 10.7498/aps.60.068802
    [7] 叶望川, 李彪, 王佳. Sinh-Gordon方程的同伦近似解. 物理学报, 2011, 60(3): 030207. doi: 10.7498/aps.60.030207
    [8] 焦小玉. 远场模型方程的同伦近似对称约化. 物理学报, 2011, 60(12): 120201. doi: 10.7498/aps.60.120201
    [9] 温朝晖, 莫嘉琪. 广义(3+1)维非线性Burgers系统孤波级数解. 物理学报, 2010, 59(12): 8311-8315. doi: 10.7498/aps.59.8311
    [10] 石兰芳, 周先春. 一类扰动Burgers方程的孤子同伦映射解. 物理学报, 2010, 59(5): 2915-2918. doi: 10.7498/aps.59.2915
    [11] 石兰芳, 莫嘉琪. 一类扰动非线性发展方程的类孤子同伦近似解析解. 物理学报, 2009, 58(12): 8123-8126. doi: 10.7498/aps.58.8123
    [12] 莫嘉琪, 程燕. 广义Boussinesq方程的同伦映射近似解. 物理学报, 2009, 58(7): 4379-4382. doi: 10.7498/aps.58.4379
    [13] 莫嘉琪, 姚静荪. 扰动KdV方程孤子的同伦映射解. 物理学报, 2008, 57(12): 7419-7422. doi: 10.7498/aps.57.7419
    [14] 石玉仁, 许新建, 吴枝喜, 汪映海, 杨红娟, 段文山, 吕克璞. 同伦分析法在求解非线性演化方程中的应用. 物理学报, 2006, 55(4): 1555-1560. doi: 10.7498/aps.55.1555
    [15] 赵 武, 刘 彬. 相对转动运动学方程的级数解. 物理学报, 2005, 54(10): 4543-4548. doi: 10.7498/aps.54.4543
    [16] 周传宏, 王磊, 王植恒. 提高光栅衍射计算收敛性的途径. 物理学报, 2001, 50(6): 1046-1051. doi: 10.7498/aps.50.1046
    [17] 吴杭生, 顾一鸣. Tc级数解的收敛性质. 物理学报, 1981, 30(8): 1132-1136. doi: 10.7498/aps.30.1132
    [18] 周子舫, 吴杭生, 茅德强, 顾一鸣. Tc级数解的收敛半径问题. 物理学报, 1980, 29(9): 1186-1192. doi: 10.7498/aps.29.1186
    [19] 周子舫, 茅德强, 顾一鸣, 吴杭生. 关于一级近似Tc级数解的收敛问题. 物理学报, 1980, 29(10): 1338-1341. doi: 10.7498/aps.29.1338
    [20] 陶云. 吸引费米体系多体微扰级数的收敛性. 物理学报, 1966, 22(5): 580-588. doi: 10.7498/aps.22.580
计量
  • 文章访问数:  6364
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-09
  • 修回日期:  2019-05-12
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-20

/

返回文章
返回