-
激光尾场电子加速装置中, 为了获得可稳定重复产生的高质量单能尾场电子, 电子的可控注入是其中的关键. 基于自主设计的级联加速喷气靶, 研究离化注入、冲击波前沿注入等可控注入技术及其结合对尾场电子产生阈值、电子能谱及其稳定性的影响. 研究结果显示, 离化注入机制、冲击波前沿注入机制以及级联加速喷嘴的结合, 可以使尾场电子的注入阈值大幅度降低, 且电子的离化注入区域被限制于冲击波前沿处, 最终大幅度降低电子束的绝对能散、提高稳定性. 在最优化的条件下, 可以获得最小发散角为(3.6 × 3.8) mrad, 平均中心能量为(63.24 ± 6.12) MeV, 平均能散为(13.0 ± 3.9) MeV、平均电量为(5.99 ± 3.10) pC的重频单能尾场电子.Femtosecond electron bunches can be produced by laser plasma wakefield accelerators, with energy tunable from tens of MeV to a few GeV. In order to produce stable mono-energetic electron bunches, a critical issue is to control the injection of electron into the wakefield. The ionization injection is one of the most effective methods of controlling the injection, which is usually a continuous process. So, the electron bunches produced through ionization injection usually possess large energy spread. In order to optimize the ionization injection technique and produce stable monoenergetic wakefield electron beams, experimental studies are conducted on our 45 TW laser facility. In this work, a mixed injection mechanism assisted cascaded laser wakefield accelerator is presented. Based on a double-nozzle cascaded accelerator, the influences of ionization injection, shock wave front injection and their combination are experimentally studied. The results show that the lower threshold of the injection can be substantially reduced. The ionization injection is restricted within the shock wave front. As a result, mono-energetic electron bunches with reduced absolute energy spread can be stably produced. Under the most optimal conditions, the central energy and energy spread are (63.24 ± 6.12) MeV and (13.0 ± 3.9) MeV. The charge quantity of the electron bunches is (5.99 ± 3.10) pC. The minimum emitting anglular spread is (3.6 × 3.8) mrad.
-
Keywords:
- wakefield acceleration /
- cascaded accelerator /
- shock wave front injection /
- ionization injection
[1] Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267Google Scholar
[2] 徐慧, 盛政明, 张杰 2007 物理学报 56 968Google Scholar
Xu H, Sheng Z M, Zhang J 2007 Acta Phys. Sin. 56 968Google Scholar
[3] Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar
[4] Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A B, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszyanski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 535Google Scholar
[5] Geddes C G R, Toth C, Tilborg J V, Esarey E, Schroeder C B, Bruhwiler D L, Nieter C, Cary J R, Leemans W P 2004 Nature 431 538Google Scholar
[6] Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J P, Burgy F, Malka V 2004 Nature 431 541Google Scholar
[7] Clayton C E, Ralph J E, Albert F, Fonseca R A, Glenzer S H, Joshi C, Lu W, Marsh K A, Martins S F, Mori W B, Pak A, Tsung F S, Pollock B B, Ross J S, Silva L O, Froula D H 2010 Phys. Rev. Lett. 105 105003Google Scholar
[8] Wang X M, Zgadzaj R, Fazel N, Li Z Y, Yi S A, Zhang X, Henderson W, Chang Y Y, Korzekwa R, Tsai H E, Pai C H, Quevedo H, Dyer G, Gaul E, Martinez M, Bernstein A C, Borger T, Spinks M, Donovan M, Khudik V, Shvets G, Ditmire T, Downer M C 2013 Nat. Commun. 4 1988Google Scholar
[9] Kim H T, Pae K H, Cha H J, I Kim I J, Yu T J, Sung J H, Lee S K, Jeong T M, Lee J 2013 Phys. Rev. Lett. 111 165002Google Scholar
[10] Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Tóth C, Daniels J, Mittelberger D E, Bulanov S S, Vay J L, Geddes C G R, Esarey E 2014 Phys. Rev. Lett. 113 245002Google Scholar
[11] Catravas P, Esarey E, Leemans W P 2001 Meas. Sci. Technology 12 1828Google Scholar
[12] Powers N D, Ghebregziabher I, Golovin G, Liu C, Chen S, Banerjee S, Zhang J, Umstadter D P 2013 Nat. Photonics 8 28
[13] Chen S, Powers N D, Ghebregziabher I, Maharjan C M, Liu C, Golovin G, Banerjee S, Zhang J, Cunningham N, Moorti A, Clarke S, Pozzi S, Umstadter D P 2013 Phys. Rev. Lett. 110 155003Google Scholar
[14] Sarri G, Corvan D J, Schumaker W, Cole J M, Piazza A Di, Ahmed H, Harvey C, Keitel C H, Krushelnick K, Mangles S P D, Najmudin Z, Symes D, Thomas A G R, Yeung M, Zhao Z, Zepf M 2014 Phys. Rev. Lett. 113 224801Google Scholar
[15] Yan W, Fruhling C, Golovin G, Haden D, Luo J, Zhang P, Zhao B, Zhang J, Liu C, Chen M, Chen S, Banerjee S, Umstadter D 2017 Nat. Photonics 11 514Google Scholar
[16] Khrennikov K, Wenz J, Buck A, Xu J, Heigoldt M, Veisz L, Karsch S 2015 Phys. Rev. Lett. 114 195003Google Scholar
[17] Phuoc K T, Corde S, Thaury C, Malka V, Tafzi A, Goddet J P, Shah R C, Sebban S, Rousse A 2012 Nat. Photonics 6 308Google Scholar
[18] Tsai H E, Wang X M, Shaw J M, Li Z Y, Arefiev A V, Zhang X, Zgadzaj R, Henderson W, Khudik V, Shvets G, Downer M C 2015 Phys. Plasmas 22 023106Google Scholar
[19] Yu C H, Qi R, Wang W T, Liu J S, Li W T, Wang C, Zhang Z J, Liu J Q, Qin Z Y, Fang M, Feng K, Wu Y, Tian Y, Xu Yi, Wu F X, Leng Y X, Weng X F, Wang J H, Wei F L, Yi Y C, Song Z H, Li R X, Xu Z Z 2016 Sci. Rep. 6 29518Google Scholar
[20] Modena A, Najmudin Z, Dangor A E, Clayton C E, Marsh C A, Joshi C, Malka V, Darrow C B, Danson C, Neely D, Walsh F N 1995 Nature 377 606Google Scholar
[21] Tzeng K C, Mori W B, Katsouleas T 1997 Phys. Rev. Lett. 79 5258Google Scholar
[22] Bulanov S V, Pegoraro F, Pukhov A M, Sakharov A S 1997 Phys. Rev. Lett. 78 4205Google Scholar
[23] Gordon D, Tzeng K C, Clayton C E, Dangor A E, Malka V, Marsh K A, Modena A, Mori W B, Muggli P, Najmudin Z, Neely D, Danson C, Joshi C 1998 Phys. Rev. Lett. 80 2133Google Scholar
[24] Kostyukov I, Pukhov A, Kiselev S 2004 Phys. Plasmas 11 5256Google Scholar
[25] Lu W, Huang C, Zhou M, Mori W B, Katsouleas T 2006 Phys. Rev. Lett. 96 165002Google Scholar
[26] Osterhoff J, Popp A, Major Z, Marx B, Rowlands-Rees T P, Fuchs M, Geissler M, Hörlein R, Hidding B, Becker S, Peralta E A, Schramm U, Grüner F, Habs D, Krausz F, Hooker S M, Karsch S 2008 Phys. Rev. Lett. 101 085002Google Scholar
[27] Chen M, Esarey E, Schroeder C B, Geddes C G R, Leemans W P 2012 Phys. Plasmas 19 033101Google Scholar
[28] Rowlands-Rees T P, Kamperidis C, Kneip S, Gonsalves A J, Mangles S P D, Gallacher J G, Brunetti E, Ibbotson T, Murphy C D, Foster P S, Streeter M J V, Budde F, Norreys P A, Jaroszynski D A, Krushelnick K, Najmudin Z, Hooker S M 2008 Phys. Rev. Lett. 100 105005Google Scholar
[29] Pak A, Marsh K A, Martins S F, Lu W, Mori W B, Joshi C 2010 Phys. Rev. Lett. 104 025003Google Scholar
[30] McGuffey C, Thomas A G R, Schumaker W, Matsuoka T, Chvykov V, Dollar F J, Kalintchenko G, Yanovsky V, Maksimchuk A, Krushelnick K 2010 Phys. Rev. Lett. 104 025004Google Scholar
[31] Esarey E, Hubbard R F, Leemans W P, Ting A, Sprangle P 1997 Phys. Rev. Lett. 79 2682Google Scholar
[32] Faure J, Rechatin C, Norlin A, Lifschitz A, Glinec Y, Malka V 2006 Nature 444 737Google Scholar
[33] Kotaki H, Daito I, Kando M, Hayashi Y, Kawase K, Kameshima T, Fukuda Y, Homma T, Ma J, Chen L M, Esirkepov T Zh, Pirozhkov A S, Koga J K, Faenov A, Pikuz T, Kiriyama H, Okada H, Shimomura T, Nakai Y, Tanoue M, Sasao H, Wakai D, Matsuura H, Kondo S, Kanazawa S, Sugiyama A, Daido H, Bulanov S V 2009 Phys. Rev. Lett. 103 194803Google Scholar
[34] Bulanov S, Naumova N, Pegoraro F, Sakai J 1998 Phys. Rev. E 58 R5257Google Scholar
[35] Geddes C G R, Nakamura K, Plateau G R, Toth C, Cormier-Michel E, Esarey E, Schroeder C B, Cary J R, Leemans W P 2008 Phys. Rev. Lett. 110 215004
[36] Faure J, Rechatin C, Lundh O, Ammoura L, Malka V 2010 Phys. Plasmas 17 083107Google Scholar
[37] Gonsalves A J, Nakamura K, Lin C, Panasenko D, Shiraishi S, Sokollik T, Benedetti C, Schroeder C B, Geddes C G R, van Tilborg J, Osterhoff J, Esarey E, Toth C, Leemans W P 2011 Nat. Phys. 7 862Google Scholar
[38] Buck A, Wenz J, Xu J, Khrennikov K, Schmid K, Heigoldt M, Mikhailova J M, Geissler M, Shen B, Krausz F, Karsch S, Veisz L 2013 Phys. Rev. Lett. 110 185006Google Scholar
[39] Suk H, Barov N, Rosenzweig J B, Esarey E 2001 Phys. Rev. Lett. 86 1011Google Scholar
[40] Tomassini P, Galimberti M, Giulietti A, Giulietti D, Gizzi L A, Labate L, Pegoraro F 2003 Phys. Rev. Spec. Top. Accel. Beams 6 121301Google Scholar
[41] Kim J U, Hafz N, Suk H 2004 Phys. Rev. E 69 026409Google Scholar
[42] Chien T Y, Chang C L, Lee C H, Lin J Y, Wang J, Chen S Y 2005 Phys. Rev. Lett. 94 115003Google Scholar
[43] Schmid K, Buck A, Sears C M S, Mikhailova J M, Tautz R, Herrmann D, Geissler M, Krausz F, Veisz L 2010 Phys. Rev. Spec. Top. Accel. Beams 13 091301Google Scholar
[44] Liu J S, Xia C Q, Wang W T, Lu H Y, Wang C, Deng A H, Li W T, Zhang H, Liang X Y, Leng Y X, Lu X M, Wang C, Wang J Z, Nakajima K, Li R X, Xu Z Z 2011 Phys. Rev. Lett. 107 035001Google Scholar
[45] Wang W T, Li W T, Liu J S, Zhang Z J, Qi R, Yu C H, Liu J Q, Fang M, Qin Z Y, Wang C, Xu Y, Wu F X, Leng Y X, Li R X, Xu Z Z 2016 Phys. Rev. Lett. 117 124801Google Scholar
[46] Leemans W, Esarey E 2009 Phys. Today 62 44
[47] Schroeder C B, Esarey E, Geddes C G R, Benedetti C, Leemans W P 2010 Phys. Rev. Spec. Top. Accel. Beams 13 101301Google Scholar
[48] 董克攻, 谷渝秋, 朱斌, 吴玉迟, 曹磊峰, 何颖玲, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 张保汉, 王晓方 2010 物理学报 596 8733Google Scholar
Dong K G, Gu Y Q, Zhu B, Wu Y C, Cao L F, He Y L, Liu H J, Hong W, Zhou W M, Zhao Z Q, Jiao C Y, Wen X L, Zhang B H, Wang X F 2010 Acta Phys. Sin. 596 8733Google Scholar
[49] Thaury C, Guillaume E, Lifschitz A, Phuoc K T, Hansson M, Grittani G, Gautier J, Goddet J P, Tafzi A, Lundh O, Malka V 2015 Sci. Rep. 5 16310Google Scholar
[50] Golovin G, Chen S, Powers N, Liu C, Banerjee S, Zhang J, Zeng M, Sheng Z, Umstadter D 2015 Phys. Rev. Spec. Top. Accel. Beams 18 011301Google Scholar
-
表 1 喷气气压650 kPa时连续打靶6发得到的电子束斑参数, θx,, θy为出射方向, σx, σy为角分布光斑的半高全宽直径
Table 1. The emitting direction θx, θy and the FWHM angular spread σx, σy of the electron angular distribution for continuous 6 shots under jet pressure of 650 kPa.
发次号 θx/mrad θy/mrad σx/mrad σy/mrad 558 –25.5 28.9 8.5 5.6 559 –22.1 27.3 5.0 5.6 560 –23.5 23.3 6.2 4.8 561 –19.0 23.3 6.5 5.1 562 –18.1 24.2 3.8 3.6 563 –19.7 19.4 6.4 4.4 表 2 喷气气压650 kPa时连续打靶5发得到的电子能谱参数
Table 2. The central energy, charge and energy spread of the electrons for continuous 5 shots when the jet pressure is 650 kPa.
发次号 中心能量/MeV 电量/pC 能散FWHM/MeV 570 66.7 6.5 10 571 66.1 9.4 17 572 58.2 2.0 6.9 573 54.2 9.2 14.3 574 71 2.86 16.6 -
[1] Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267Google Scholar
[2] 徐慧, 盛政明, 张杰 2007 物理学报 56 968Google Scholar
Xu H, Sheng Z M, Zhang J 2007 Acta Phys. Sin. 56 968Google Scholar
[3] Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar
[4] Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A B, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszyanski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 535Google Scholar
[5] Geddes C G R, Toth C, Tilborg J V, Esarey E, Schroeder C B, Bruhwiler D L, Nieter C, Cary J R, Leemans W P 2004 Nature 431 538Google Scholar
[6] Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J P, Burgy F, Malka V 2004 Nature 431 541Google Scholar
[7] Clayton C E, Ralph J E, Albert F, Fonseca R A, Glenzer S H, Joshi C, Lu W, Marsh K A, Martins S F, Mori W B, Pak A, Tsung F S, Pollock B B, Ross J S, Silva L O, Froula D H 2010 Phys. Rev. Lett. 105 105003Google Scholar
[8] Wang X M, Zgadzaj R, Fazel N, Li Z Y, Yi S A, Zhang X, Henderson W, Chang Y Y, Korzekwa R, Tsai H E, Pai C H, Quevedo H, Dyer G, Gaul E, Martinez M, Bernstein A C, Borger T, Spinks M, Donovan M, Khudik V, Shvets G, Ditmire T, Downer M C 2013 Nat. Commun. 4 1988Google Scholar
[9] Kim H T, Pae K H, Cha H J, I Kim I J, Yu T J, Sung J H, Lee S K, Jeong T M, Lee J 2013 Phys. Rev. Lett. 111 165002Google Scholar
[10] Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Tóth C, Daniels J, Mittelberger D E, Bulanov S S, Vay J L, Geddes C G R, Esarey E 2014 Phys. Rev. Lett. 113 245002Google Scholar
[11] Catravas P, Esarey E, Leemans W P 2001 Meas. Sci. Technology 12 1828Google Scholar
[12] Powers N D, Ghebregziabher I, Golovin G, Liu C, Chen S, Banerjee S, Zhang J, Umstadter D P 2013 Nat. Photonics 8 28
[13] Chen S, Powers N D, Ghebregziabher I, Maharjan C M, Liu C, Golovin G, Banerjee S, Zhang J, Cunningham N, Moorti A, Clarke S, Pozzi S, Umstadter D P 2013 Phys. Rev. Lett. 110 155003Google Scholar
[14] Sarri G, Corvan D J, Schumaker W, Cole J M, Piazza A Di, Ahmed H, Harvey C, Keitel C H, Krushelnick K, Mangles S P D, Najmudin Z, Symes D, Thomas A G R, Yeung M, Zhao Z, Zepf M 2014 Phys. Rev. Lett. 113 224801Google Scholar
[15] Yan W, Fruhling C, Golovin G, Haden D, Luo J, Zhang P, Zhao B, Zhang J, Liu C, Chen M, Chen S, Banerjee S, Umstadter D 2017 Nat. Photonics 11 514Google Scholar
[16] Khrennikov K, Wenz J, Buck A, Xu J, Heigoldt M, Veisz L, Karsch S 2015 Phys. Rev. Lett. 114 195003Google Scholar
[17] Phuoc K T, Corde S, Thaury C, Malka V, Tafzi A, Goddet J P, Shah R C, Sebban S, Rousse A 2012 Nat. Photonics 6 308Google Scholar
[18] Tsai H E, Wang X M, Shaw J M, Li Z Y, Arefiev A V, Zhang X, Zgadzaj R, Henderson W, Khudik V, Shvets G, Downer M C 2015 Phys. Plasmas 22 023106Google Scholar
[19] Yu C H, Qi R, Wang W T, Liu J S, Li W T, Wang C, Zhang Z J, Liu J Q, Qin Z Y, Fang M, Feng K, Wu Y, Tian Y, Xu Yi, Wu F X, Leng Y X, Weng X F, Wang J H, Wei F L, Yi Y C, Song Z H, Li R X, Xu Z Z 2016 Sci. Rep. 6 29518Google Scholar
[20] Modena A, Najmudin Z, Dangor A E, Clayton C E, Marsh C A, Joshi C, Malka V, Darrow C B, Danson C, Neely D, Walsh F N 1995 Nature 377 606Google Scholar
[21] Tzeng K C, Mori W B, Katsouleas T 1997 Phys. Rev. Lett. 79 5258Google Scholar
[22] Bulanov S V, Pegoraro F, Pukhov A M, Sakharov A S 1997 Phys. Rev. Lett. 78 4205Google Scholar
[23] Gordon D, Tzeng K C, Clayton C E, Dangor A E, Malka V, Marsh K A, Modena A, Mori W B, Muggli P, Najmudin Z, Neely D, Danson C, Joshi C 1998 Phys. Rev. Lett. 80 2133Google Scholar
[24] Kostyukov I, Pukhov A, Kiselev S 2004 Phys. Plasmas 11 5256Google Scholar
[25] Lu W, Huang C, Zhou M, Mori W B, Katsouleas T 2006 Phys. Rev. Lett. 96 165002Google Scholar
[26] Osterhoff J, Popp A, Major Z, Marx B, Rowlands-Rees T P, Fuchs M, Geissler M, Hörlein R, Hidding B, Becker S, Peralta E A, Schramm U, Grüner F, Habs D, Krausz F, Hooker S M, Karsch S 2008 Phys. Rev. Lett. 101 085002Google Scholar
[27] Chen M, Esarey E, Schroeder C B, Geddes C G R, Leemans W P 2012 Phys. Plasmas 19 033101Google Scholar
[28] Rowlands-Rees T P, Kamperidis C, Kneip S, Gonsalves A J, Mangles S P D, Gallacher J G, Brunetti E, Ibbotson T, Murphy C D, Foster P S, Streeter M J V, Budde F, Norreys P A, Jaroszynski D A, Krushelnick K, Najmudin Z, Hooker S M 2008 Phys. Rev. Lett. 100 105005Google Scholar
[29] Pak A, Marsh K A, Martins S F, Lu W, Mori W B, Joshi C 2010 Phys. Rev. Lett. 104 025003Google Scholar
[30] McGuffey C, Thomas A G R, Schumaker W, Matsuoka T, Chvykov V, Dollar F J, Kalintchenko G, Yanovsky V, Maksimchuk A, Krushelnick K 2010 Phys. Rev. Lett. 104 025004Google Scholar
[31] Esarey E, Hubbard R F, Leemans W P, Ting A, Sprangle P 1997 Phys. Rev. Lett. 79 2682Google Scholar
[32] Faure J, Rechatin C, Norlin A, Lifschitz A, Glinec Y, Malka V 2006 Nature 444 737Google Scholar
[33] Kotaki H, Daito I, Kando M, Hayashi Y, Kawase K, Kameshima T, Fukuda Y, Homma T, Ma J, Chen L M, Esirkepov T Zh, Pirozhkov A S, Koga J K, Faenov A, Pikuz T, Kiriyama H, Okada H, Shimomura T, Nakai Y, Tanoue M, Sasao H, Wakai D, Matsuura H, Kondo S, Kanazawa S, Sugiyama A, Daido H, Bulanov S V 2009 Phys. Rev. Lett. 103 194803Google Scholar
[34] Bulanov S, Naumova N, Pegoraro F, Sakai J 1998 Phys. Rev. E 58 R5257Google Scholar
[35] Geddes C G R, Nakamura K, Plateau G R, Toth C, Cormier-Michel E, Esarey E, Schroeder C B, Cary J R, Leemans W P 2008 Phys. Rev. Lett. 110 215004
[36] Faure J, Rechatin C, Lundh O, Ammoura L, Malka V 2010 Phys. Plasmas 17 083107Google Scholar
[37] Gonsalves A J, Nakamura K, Lin C, Panasenko D, Shiraishi S, Sokollik T, Benedetti C, Schroeder C B, Geddes C G R, van Tilborg J, Osterhoff J, Esarey E, Toth C, Leemans W P 2011 Nat. Phys. 7 862Google Scholar
[38] Buck A, Wenz J, Xu J, Khrennikov K, Schmid K, Heigoldt M, Mikhailova J M, Geissler M, Shen B, Krausz F, Karsch S, Veisz L 2013 Phys. Rev. Lett. 110 185006Google Scholar
[39] Suk H, Barov N, Rosenzweig J B, Esarey E 2001 Phys. Rev. Lett. 86 1011Google Scholar
[40] Tomassini P, Galimberti M, Giulietti A, Giulietti D, Gizzi L A, Labate L, Pegoraro F 2003 Phys. Rev. Spec. Top. Accel. Beams 6 121301Google Scholar
[41] Kim J U, Hafz N, Suk H 2004 Phys. Rev. E 69 026409Google Scholar
[42] Chien T Y, Chang C L, Lee C H, Lin J Y, Wang J, Chen S Y 2005 Phys. Rev. Lett. 94 115003Google Scholar
[43] Schmid K, Buck A, Sears C M S, Mikhailova J M, Tautz R, Herrmann D, Geissler M, Krausz F, Veisz L 2010 Phys. Rev. Spec. Top. Accel. Beams 13 091301Google Scholar
[44] Liu J S, Xia C Q, Wang W T, Lu H Y, Wang C, Deng A H, Li W T, Zhang H, Liang X Y, Leng Y X, Lu X M, Wang C, Wang J Z, Nakajima K, Li R X, Xu Z Z 2011 Phys. Rev. Lett. 107 035001Google Scholar
[45] Wang W T, Li W T, Liu J S, Zhang Z J, Qi R, Yu C H, Liu J Q, Fang M, Qin Z Y, Wang C, Xu Y, Wu F X, Leng Y X, Li R X, Xu Z Z 2016 Phys. Rev. Lett. 117 124801Google Scholar
[46] Leemans W, Esarey E 2009 Phys. Today 62 44
[47] Schroeder C B, Esarey E, Geddes C G R, Benedetti C, Leemans W P 2010 Phys. Rev. Spec. Top. Accel. Beams 13 101301Google Scholar
[48] 董克攻, 谷渝秋, 朱斌, 吴玉迟, 曹磊峰, 何颖玲, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 张保汉, 王晓方 2010 物理学报 596 8733Google Scholar
Dong K G, Gu Y Q, Zhu B, Wu Y C, Cao L F, He Y L, Liu H J, Hong W, Zhou W M, Zhao Z Q, Jiao C Y, Wen X L, Zhang B H, Wang X F 2010 Acta Phys. Sin. 596 8733Google Scholar
[49] Thaury C, Guillaume E, Lifschitz A, Phuoc K T, Hansson M, Grittani G, Gautier J, Goddet J P, Tafzi A, Lundh O, Malka V 2015 Sci. Rep. 5 16310Google Scholar
[50] Golovin G, Chen S, Powers N, Liu C, Banerjee S, Zhang J, Zeng M, Sheng Z, Umstadter D 2015 Phys. Rev. Spec. Top. Accel. Beams 18 011301Google Scholar
计量
- 文章访问数: 6658
- PDF下载量: 55
- 被引次数: 0