搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

速度对聚四氟乙烯摩擦系数影响的分子动力学模拟

潘登 刘长鑫 张泽洋 高玉金 郝秀红

引用本文:
Citation:

速度对聚四氟乙烯摩擦系数影响的分子动力学模拟

潘登, 刘长鑫, 张泽洋, 高玉金, 郝秀红

Effect of velocity on polytetrafluoroethylene friction coefficient using molecular dynamics simulaiton

Pan Deng, Liu Chang-Xin, Zhang Ze-Yang, Gao Yu-Jin, Hao Xiu-Hong
PDF
HTML
导出引用
  • 基于分子动力学方法建立了双层聚四氟乙烯(polytetrafluoroethylene, PTFE)摩擦模型, 研究了不同速度下PTFE的摩擦过程. 通过分析不同速度下接触区内下层PTFE分子键长、键角、分子形状的变化及接触过程中摩擦力和正压力的变化, 从微观角度研究了速度对PTFE摩擦系数的影响. 研究结果表明: 随着速度的增加, 接触区内PTFE粒子间的键长变短, 键角变小, 分子链沿x方向的变形量增加. 变形后的PTFE分子产生的回弹力导致上、下层PTFE分子间相互作用力增加, 从而增加了摩擦力. 当速度进一步增大时, 接触区内下层PTFE粒子间的键长和键角多处于平衡位置, 分子链沿x方向的变形量减小. 这很可能是由于接触区内下层PTFE分子沿速度方向倾斜, 使上、下层PTFE分子趋于平行滑动, 从而降低了摩擦力. 不同速度下正压力几乎保持不变. 因此, 当上层PTFE所受外载荷固定时, 摩擦系数随着速度的增加先增大后减小, 临界速度为1.2 m/s, 这与实验研究结果一致.
    Velocity is an important factor affecting the friction coefficient of polymers. Polytetrafluoroethylene (PTFE), as a typical self-lubricating polymer, has attracted extensive attention because of its low friction coefficient. Currently, the friction coefficient of PTFE is investigated usually by using experimental method. The experimental study which is limited by the functionality and precision of the apparatus is inaccessible to the exploration of the microscopic tribological mechanism of PTFE. Therefore, the coarse-grained molecular dynamics simulation method is adopted in this study. In the coarse-grained model, one PTFE molecule is simplified into ten beads, including two end beads and eight backbone beads. The non-bonding and bonding interactions between beads are described by using Lennard-Jones (L-J) and multi-centered Gaussian-based potential. In order to investigate the effect of velocity on the friction coefficient of PTFE at an atomic level, we build a two-layer PTFE friction model by using the coarse-grained molecular dynamics simulation method. To directly compare the experimental results with the simulation results, we set the value of the externally applied load and the range of the velocities that match each other as closely as possible. The mechanism of how the velocity affects PTFE friction coefficient is obtained at an atomic level through analyzing the bond length distribution, bond angle distribution, the deformation of the bottom PTFE molecules within the contact area, and the friction force and normal force as a function of simulation time. The simulation results show that the bond length and bond angle decrease, the deformation of the bottom PTFE molecules along the x-direction and the friction force increase with velocity increasing. This is because the bounce back caused by the deformed PTFE molecules enhances the friction force. The severer the deformation, the larger the friction force will be. However, when the velocity exceeds a critical velocity, the bond length and bond angle increase, the deformation of the bottom PTFE molecule and the friction force decrease with velocity increasing. This is most likely due to the fact that the bottom PTFE molecules within the contact area tend to tilt along the moving direction of the upper PTFE layer, thereby reducing the angle between the upper and the bottom PTFE molecules to an angle close to the angle of parallel sliding, finally resulting in the decrease of the friction force. The deformations of PTFE molecules along the z-direction are nearly invariable under different velocities. This corresponds to the variation of the normal force. Therefore, for a constant externally applied load, the friction coefficient first increases then decreases with velocity increasing. In addition, the critical velocity is 1.2 m/s, which is in line with the published experimental result.
      通信作者: 郝秀红, hxhong@ysu.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 51605418)和河北省自然科学基金青年科学基金(批准号: E2016203206)资助的课题
      Corresponding author: Hao Xiu-Hong, hxhong@ysu.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51605418) and the Young Scientists Fund of the Natural Science Foundation of Heibei, China (Grant No. E2016203206)
    [1]

    Tian K, Goldsby D L, Carpick R W 2018 Phys. Rev. Lett. 120 186101Google Scholar

    [2]

    Dong Y, Duan Z, Tao Y, Wei Z, Gueye B, Zhang Y, Chen Y 2019 Tribol. Int. 136 259Google Scholar

    [3]

    董赟, 段早琦, 陶毅, Gueye Birahima, 张艳, 陈云飞 2019 物理学报 68 016801Google Scholar

    Dong Y, Duan Z Q, Tao Y, Gueye B, Zhang Y, Chen Y F 2019 Acta Phys. Sin. 68 016801Google Scholar

    [4]

    Li Q, Dong Y, Perez D, Martini A, Carpick R W 2011 Phys. Rev. Lett. 106 126101Google Scholar

    [5]

    Sharma N, Kumar N, Dash S, Tyagi A K 2012 AIP Conf. Proc. 1447 651

    [6]

    Sun F, Hou Y, Wang L, Huang L, Qian Z 2017 Int. J. Pave. Res. Tech. 10 343Google Scholar

    [7]

    Lin L, Pei X Q, Bennewitz R, Schlarb A K 2018 Tribol. Int. 122 108Google Scholar

    [8]

    Xiong X 2018 Ind. Lubr. Tribol. 70 273Google Scholar

    [9]

    Barry P R, Jang I, Perry S S, Sawyer W G, Sinnott S B, Phillpot S R 2007 J. Computer-Aided Mater. Des. 14 239Google Scholar

    [10]

    Yuan X D, Yang X J 2010 Wear 269 291Google Scholar

    [11]

    Harris K L, Pitenis A A, Sawyer W G, Krick B A, Blackman G S, Kasprzak D J, Junk C P 2015 Macromolecules 48 3739Google Scholar

    [12]

    杨学宾, 晋欣桥, 杜志敏, 崔天生, 杨绍侃 2010 内燃机工程 31 105Google Scholar

    Yang X B, Jin X Q, Du Z M, Cui T S, Yang S K 2010 Chin. Int. Combu. Engine. Eng. 31 105Google Scholar

    [13]

    郭丰镐 1981 机械工程材料 4 5

    Guo F G 1981 Mater. Mech. Eng. 4 5

    [14]

    黄传辉 2008 徐州工程学院学报(自然科学版) 23 7Google Scholar

    Huang C H 2008 Xuzhou Inst. Technol. (Natural Sciences Edition) 23 7Google Scholar

    [15]

    马姗, 马军, 杨光参 2016 物理学报 65 148701Google Scholar

    Ma S, Ma J, Yang G C 2016 Acta Phys. Sin. 65 148701Google Scholar

    [16]

    Ewen J P, Heyes D M, Dini D 2018 Friction 6 349Google Scholar

    [17]

    Dong Y, Li Q, Martini A 2013 J. Vac. Sci. Technol. A 31 030801

    [18]

    Dong Y, Wang F, Zhu Z, He T 2019 AIP Adv. 9 045213Google Scholar

    [19]

    Barry P R, Chiu P Y, Perry S S, Sawyer W G, Sinnott S B, Phillpot S R 2015 Tribol. Lett. 58 50Google Scholar

    [20]

    Barry P R, Chiu P Y, Perry S S, Sawyer W G, Phillpot S R, Sinnott S B 2009 J. Phys.: Condens. Matter 21 144201Google Scholar

    [21]

    Chiu P Y, Barry P R, Perry S S, Sawyer W G, Phillpot S R, Sinnott S B 2011 Tribol. Lett. 42 193Google Scholar

    [22]

    王曦, 黎明, 叶方富, 周昕 2017 物理学报 66 150201Google Scholar

    Wang X, Li M, Ye F F, Zhou X 2017 Acta Phys. Sin. 66 150201Google Scholar

    [23]

    Hagita K, Morita H, Doi M, Takano H 2016 Macromolecules 49 1972Google Scholar

    [24]

    Thota N, Luo Z, Hu Z, Jiang J 2013 J. Phys. Chem. B 117 9690Google Scholar

    [25]

    Zuo Z, Yang Y, Qi X, Su W, Yang X 2014 Wear 320 87Google Scholar

    [26]

    Milano G, Mü1ller P F 2005 J. Phys. Chem. B 109 18609Google Scholar

    [27]

    Milano G, Goudeau S, Mü1ller P F 2005 J. Polym. Sci. Pol. Phys. 43 871Google Scholar

    [28]

    Pan D, Liu C, Qi X, Yang Y, Hao X 2019 Tribol. Int. 133 32Google Scholar

    [29]

    Onodera T, Nunoshige J, Kawasaki K, Adachi K, Kurihara K, Kubo M 2017 J. Phys. Chem. C 121 14589Google Scholar

    [30]

    Plimpton S 1995 J. Comp. Physiol. 117 1Google Scholar

    [31]

    Jang I, Burris D L, Dickrell P L, Barry P R, Santos C, Perry S S, Phillpot S R, Sinnott S B, Sawyer W G 2007 J. Appl. Phys. 102 123509Google Scholar

  • 图 1  (a) 化学式; (b) 全原子模型; (c) 映射原理; (d) 粗粒化模型

    Fig. 1.  (a) Chemical structure; (b) all-atom model; (c) mapping scheme; (d) coarse-grained model.

    图 2  粒子间相互作用势

    Fig. 2.  Schematic of interaction among beads.

    图 3  PTFE-PTFE摩擦的粗粒化模型 (a)初始分布; (b)随机分布; (c)平衡态分布; (d)最终分布

    Fig. 3.  The coarse-grained PTFE-PTFE friction model: (a) Initial distribution; (b) random distribution; (c) equilibrium distribution; (d) final distribution.

    图 4  (a) 摩擦力; (b)正压力; (c)摩擦系数随模拟时间的变化

    Fig. 4.  (a) Friction force; (b) normal force; (c) friction coefficient as a function of simulation time.

    图 5  当外载荷为31 MPa时, 摩擦系数随速度的变化

    Fig. 5.  Effect of velocity on friction coefficient when the externally applied load is 31 MPa.

    图 6  不同速度下接触区内下层PTFE的键长 (a)和键角分布 (b)

    Fig. 6.  (a) Bond length and (b) bond angle distributions of the bottom PTFE molecules within the contact area under different velocities.

    图 7  接触区内下层PTFE分子沿(a) x方向及(b) z方向的回转半径分布

    Fig. 7.  Distributions of radius of gyration along (a) x and (b) z directions of the bottom PTFE molecules within the contact area.

    图 8  (a) 摩擦力和(b) 正压力随模拟时间的变化

    Fig. 8.  (a) Friction force and (b) normal force as a function of simulation time.

    表 1  键伸缩势参数[28]

    Table 1.  Parameters of the bond strength potential[28]

    Bond typenbiAbiwbilbci
    B-B/B-E210.30.152.7
    20.030.22.5
    下载: 导出CSV

    表 2  键角弯曲势参数[28]

    Table 2.  Parameters of the bond angle potential[28].

    Angle typenaiAaiwai/(°)θaci/(°)
    B-B-B/B-B-E311.4430180
    21.6612180
    30.1229145
    下载: 导出CSV
  • [1]

    Tian K, Goldsby D L, Carpick R W 2018 Phys. Rev. Lett. 120 186101Google Scholar

    [2]

    Dong Y, Duan Z, Tao Y, Wei Z, Gueye B, Zhang Y, Chen Y 2019 Tribol. Int. 136 259Google Scholar

    [3]

    董赟, 段早琦, 陶毅, Gueye Birahima, 张艳, 陈云飞 2019 物理学报 68 016801Google Scholar

    Dong Y, Duan Z Q, Tao Y, Gueye B, Zhang Y, Chen Y F 2019 Acta Phys. Sin. 68 016801Google Scholar

    [4]

    Li Q, Dong Y, Perez D, Martini A, Carpick R W 2011 Phys. Rev. Lett. 106 126101Google Scholar

    [5]

    Sharma N, Kumar N, Dash S, Tyagi A K 2012 AIP Conf. Proc. 1447 651

    [6]

    Sun F, Hou Y, Wang L, Huang L, Qian Z 2017 Int. J. Pave. Res. Tech. 10 343Google Scholar

    [7]

    Lin L, Pei X Q, Bennewitz R, Schlarb A K 2018 Tribol. Int. 122 108Google Scholar

    [8]

    Xiong X 2018 Ind. Lubr. Tribol. 70 273Google Scholar

    [9]

    Barry P R, Jang I, Perry S S, Sawyer W G, Sinnott S B, Phillpot S R 2007 J. Computer-Aided Mater. Des. 14 239Google Scholar

    [10]

    Yuan X D, Yang X J 2010 Wear 269 291Google Scholar

    [11]

    Harris K L, Pitenis A A, Sawyer W G, Krick B A, Blackman G S, Kasprzak D J, Junk C P 2015 Macromolecules 48 3739Google Scholar

    [12]

    杨学宾, 晋欣桥, 杜志敏, 崔天生, 杨绍侃 2010 内燃机工程 31 105Google Scholar

    Yang X B, Jin X Q, Du Z M, Cui T S, Yang S K 2010 Chin. Int. Combu. Engine. Eng. 31 105Google Scholar

    [13]

    郭丰镐 1981 机械工程材料 4 5

    Guo F G 1981 Mater. Mech. Eng. 4 5

    [14]

    黄传辉 2008 徐州工程学院学报(自然科学版) 23 7Google Scholar

    Huang C H 2008 Xuzhou Inst. Technol. (Natural Sciences Edition) 23 7Google Scholar

    [15]

    马姗, 马军, 杨光参 2016 物理学报 65 148701Google Scholar

    Ma S, Ma J, Yang G C 2016 Acta Phys. Sin. 65 148701Google Scholar

    [16]

    Ewen J P, Heyes D M, Dini D 2018 Friction 6 349Google Scholar

    [17]

    Dong Y, Li Q, Martini A 2013 J. Vac. Sci. Technol. A 31 030801

    [18]

    Dong Y, Wang F, Zhu Z, He T 2019 AIP Adv. 9 045213Google Scholar

    [19]

    Barry P R, Chiu P Y, Perry S S, Sawyer W G, Sinnott S B, Phillpot S R 2015 Tribol. Lett. 58 50Google Scholar

    [20]

    Barry P R, Chiu P Y, Perry S S, Sawyer W G, Phillpot S R, Sinnott S B 2009 J. Phys.: Condens. Matter 21 144201Google Scholar

    [21]

    Chiu P Y, Barry P R, Perry S S, Sawyer W G, Phillpot S R, Sinnott S B 2011 Tribol. Lett. 42 193Google Scholar

    [22]

    王曦, 黎明, 叶方富, 周昕 2017 物理学报 66 150201Google Scholar

    Wang X, Li M, Ye F F, Zhou X 2017 Acta Phys. Sin. 66 150201Google Scholar

    [23]

    Hagita K, Morita H, Doi M, Takano H 2016 Macromolecules 49 1972Google Scholar

    [24]

    Thota N, Luo Z, Hu Z, Jiang J 2013 J. Phys. Chem. B 117 9690Google Scholar

    [25]

    Zuo Z, Yang Y, Qi X, Su W, Yang X 2014 Wear 320 87Google Scholar

    [26]

    Milano G, Mü1ller P F 2005 J. Phys. Chem. B 109 18609Google Scholar

    [27]

    Milano G, Goudeau S, Mü1ller P F 2005 J. Polym. Sci. Pol. Phys. 43 871Google Scholar

    [28]

    Pan D, Liu C, Qi X, Yang Y, Hao X 2019 Tribol. Int. 133 32Google Scholar

    [29]

    Onodera T, Nunoshige J, Kawasaki K, Adachi K, Kurihara K, Kubo M 2017 J. Phys. Chem. C 121 14589Google Scholar

    [30]

    Plimpton S 1995 J. Comp. Physiol. 117 1Google Scholar

    [31]

    Jang I, Burris D L, Dickrell P L, Barry P R, Santos C, Perry S S, Phillpot S R, Sinnott S B, Sawyer W G 2007 J. Appl. Phys. 102 123509Google Scholar

  • [1] 段浩炀, 杨柯欣, 曹义刚. 不同力程排斥相互作用胶体粒子系统的摩擦特性. 物理学报, 2024, 73(15): 156201. doi: 10.7498/aps.73.20231701
    [2] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟. 物理学报, 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [3] 李鹏程, 唐重阳, 程亮, 胡永明, 肖湘衡, 陈万平. TiO2纳米粉在水中通过摩擦还原CO2. 物理学报, 2021, 70(21): 214601. doi: 10.7498/aps.70.20210210
    [4] 朱琪, 王升涛, 赵福祺, 潘昊. 层错四面体对单晶铜层裂行为影响的分子动力学研究. 物理学报, 2020, 69(3): 036201. doi: 10.7498/aps.69.20191425
    [5] 王世伟, 朱朋哲, 李瑞. 界面羟基对碳纳米管摩擦行为和能量耗散的影响. 物理学报, 2018, 67(7): 076101. doi: 10.7498/aps.67.20180311
    [6] 刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均. 平行轨道加速器等离子体动力学特性研究. 物理学报, 2018, 67(6): 065201. doi: 10.7498/aps.67.20172403
    [7] 李瑞, 密俊霞. 界面接枝羟基对碳纳米管运动和摩擦行为影响的分子动力学模拟. 物理学报, 2017, 66(4): 046101. doi: 10.7498/aps.66.046101
    [8] 杨成兵, 解辉, 刘朝. 锂离子进入碳纳米管端口速度的分子动力学模拟. 物理学报, 2014, 63(20): 200508. doi: 10.7498/aps.63.200508
    [9] 李国倡, 闵道敏, 李盛涛, 郑晓泉, 茹佳胜. 高能电子辐射下聚四氟乙烯深层充电特性. 物理学报, 2014, 63(20): 209401. doi: 10.7498/aps.63.209401
    [10] 贾汝娟, 王苍龙, 杨阳, 苟学强, 陈建敏, 段文山. 二维Frenkel-Kontorova模型中六角对称结构的摩擦现象. 物理学报, 2013, 62(6): 068104. doi: 10.7498/aps.62.068104
    [11] 万进, 田煜, 周铭, 张向军, 孟永钢. 载荷对壁虎刚毛束的摩擦各向异性特性影响的实验研究. 物理学报, 2012, 61(1): 016202. doi: 10.7498/aps.61.016202
    [12] 杨阳, 王苍龙, 段文山, 石玉仁, 陈建敏. 基底势函数的无序性对静摩擦力的影响. 物理学报, 2012, 61(13): 130501. doi: 10.7498/aps.61.130501
    [13] 兰惠清, 徐藏. 掺硅类金刚石薄膜摩擦过程的分子动力学模拟. 物理学报, 2012, 61(13): 133101. doi: 10.7498/aps.61.133101
    [14] 李瑞, 胡元中, 王慧. Si表面间水平碳纳米管束的分子动力学模拟研究. 物理学报, 2011, 60(1): 016106. doi: 10.7498/aps.60.016106
    [15] 许中明, 黄 平. 摩擦微观能量耗散机理的复合振子模型研究. 物理学报, 2006, 55(5): 2427-2432. doi: 10.7498/aps.55.2427
    [16] 满宝元, 张运海, 吕国华, 刘爱华, 张庆刚, L. Guzman, M. Adami, A. Miotello. N+离子注入聚四氟乙烯表面改性研究. 物理学报, 2005, 54(2): 837-841. doi: 10.7498/aps.54.837
    [17] 张可言. 金属材料在中强度激光辐照下的相变速度研究. 物理学报, 2004, 53(6): 1815-1819. doi: 10.7498/aps.53.1815
    [18] 张鹏锋, 夏钟福, 安振连, 吴贤勇. 正充电聚四氟乙烯薄膜驻极体的电荷储存及其动态特性. 物理学报, 2004, 53(10): 3560-3564. doi: 10.7498/aps.53.3560
    [19] 吴越华, 夏钟福, 王飞鹏, 邱勋林. 充电栅压对聚四氟乙烯多孔膜驻极体储电能力的影响. 物理学报, 2003, 52(12): 3186-3190. doi: 10.7498/aps.52.3186
    [20] 夏钟福, 邱勋林, 张冶文, ArminWedel, RudiDanz. 聚四氟乙烯多孔薄膜驻极体的电荷储存稳定性. 物理学报, 2002, 51(2): 389-394. doi: 10.7498/aps.51.389
计量
  • 文章访问数:  12521
  • PDF下载量:  185
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-03
  • 修回日期:  2019-06-10
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-05

/

返回文章
返回