搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声背散射骨质评价中的频散衰减测量与补偿

东蕊 刘成成 蔡勋兵 邵留磊 李博艺 他得安

引用本文:
Citation:

超声背散射骨质评价中的频散衰减测量与补偿

东蕊, 刘成成, 蔡勋兵, 邵留磊, 李博艺, 他得安

Measurement and compensation of frequency-dependent attenuation in ultrasonic backscatter signal from cancellous bone

Dong Rui, Liu Cheng-Cheng, Cai Xun-Bin, Shao Liu-Lei, Li Bo-Yi, Ta De-An
PDF
HTML
导出引用
  • 超声背散射法已逐渐应用于骨质的评价与诊断. 相比于人体软组织, 致密多孔的骨组织中超声衰减大, 导致接收到的超声信号微弱, 频散失真严重. 骨组织的超声频散衰减通常由超声透射法测量. 然而, 透射法测量的超声衰减为传播路径上组织介质衰减的平均值, 无法区分软组织、皮质骨及松质骨的衰减效应, 无法测量感兴趣区域内松质骨组织的超声衰减. 本文旨在研究松质骨超声频散衰减的背散射测量方法, 分析补偿超声背散射信号频散失真的可行性. 离体测量16块松质骨样本的超声背散射与透射信号(中心频率1 MHz). 采用四种背散射方法(谱移法、谱差法、谱对数差法和混合法)测量松质骨超声频散衰减系数, 与超声透射法测量的频散衰减标准值进行对比. 结果表明, 骨样本超声频散衰减范围为2.3—6.2 dB/mm/MHz, 透射法测量的超声频散衰减(均值 ± 方差)为(4.14 ± 1.14) dB/mm/MHz; 谱移法、谱差法、谱对数差法和混合法测量的频散衰减(均值 ± 方差)分别为(3.88 ± 1.15) dB/mm/MHz, (4.00 ± 0.98) dB/mm/MHz, (3.77 ± 0.84) dB/mm/MHz, (4.05 ± 0.85) dB/mm/MHz. 背散射法测量的频散衰减系数与标准值有较高的相关性(R = 0.78—0.92, p < 0.01), 其中, 谱差法(R = 0.91, p < 0.01)和混合法(R = 0.92, p < 0.01)测量结果更准确(相对误差小于20%). 以上结果说明背散射法测量松质骨超声频散衰减具有可行性, 基于傅里叶变换-逆变换原理可以补偿背散射信号频散衰减失真, 显著提高信号强度, 有利于后续超声背散射骨质评价及成像研究.
    Ultrasonic backscatter has been gradually applied to the assessment and diagnosis of bone disease. The heavy frequency-dependent attenuation of ultrasound results in weak ultrasonic signals with poor signal-to-noise ratio and serious wave distortions during propagation in cancellous bone. Ultrasonic attenuation measured with the through-transmission method is an averaged result of ultrasonically interrogated tissues (including the soft tissue, cortical bone and cancellous bone). Therefore, the through-transmission measurements can not accurately provide ultrasonic attenuation of cancellous bone of interest. The purpose of this study is to estimate ultrasonic frequency-dependent attenuation with ultrasonic backscatter measurements and to compensate for the frequency-dependent attenuation in an ultrasonic backscatter signal from cancellous bone. In-vitro ultrasonic backscatter and through-transmission measurements are performed on 16 cancellous bone specimens by using 1.0-MHz transducers. Spatial scans are performed in a 10 mm × 10 mm scanned region with a spatial interval of 0.5 mm for each bone specimen. The frequency slope of ultrasonic attenuation is measured with the ultrasonic through-transmission signals serving as a standard value. Four different algorithms (the spectral shift method, the spectral difference method, the spectral log difference method, and the hybrid method) are used to estimate the frequency slope of ultrasonic attenuation coefficient from ultrasonic backscatter signal. The results show that the frequency-dependent attenuation coefficient ranges from 2.3 dB/mm/MHz to 6.2 dB/mm/MHz for the bovine bone specimens. The through-transmission measured frequency slope of ultrasonic attenuation coefficient is (4.14 ± 1.14) dB/mm/MHz (mean ± standard deviation), and frequency slopes of ultrasonic attenuation coefficient are estimated by four backscattering methods to be (3.88 ± 1.15) dB/mm/MHz, (4.00 ± 0.98) dB/mm/MHz, (3.77 ± 0.84) dB/mm/MHz, and (4.05 ± 0.85) dB/mm/MHz, respectively. The estimated frequency-dependent attenuation is significantly correlated with the standard attenuation value (R = 0.78-0.92, p < 0.01), in which the spectral difference method (R = 0.91, p < 0.01) and the hybrid method (R = 0.92, p < 0.01) are more accurate with an estimated error less than 20%. The results prove that it is feasible to measure the frequency-dependent attenuation from ultrasonic backscatter signal of cancellous bone. Based on Fourier transform-inverse Fourier transform, the frequency-dependent attenuation can be compensated.The compensated ultrasonic signals are with significantly improved signal intensity and improved signal-to-noise ratio. This study is conducive to the subsequent ultrasonic backscatter measurement and ultrasonic imaging of cancellous bone.
      通信作者: 刘成成, chengchengliu@tongji.edu.cn ; 他得安, tda@fudan.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11874289, 11827808, 11804056, 11525416)和中央高校基本科研业务费(批准号: 02302150002)资助的课题.
      Corresponding author: Liu Cheng-Cheng, chengchengliu@tongji.edu.cn ; Ta De-An, tda@fudan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874289, 11827808, 11804056, 11525416) and the Fundamental Research Funds for the Central Universities, China (Grant No. 02302150002).
    [1]

    王牧 1997 临床医学影像杂志 8 87

    Wang M 1997 J. Chin. Clin. Med. Imaging 8 87

    [2]

    Hqrrar K, Hamami L, Lespessailles E, Jennane R 2013 Biomed. Signal Process. 8 657Google Scholar

    [3]

    他得安, 王威琪 2013 应用声学 32 199

    Ta D A, Wang W Q 2013 Appl. Acoust. 32 199

    [4]

    Liu C C, Ta D A, Wang W Q, Fujita F, Hachiken T, Matsukawa M, Mizuno K 2014 J. Appl. Phys. 115 064906Google Scholar

    [5]

    Zhang R, Ta D A, Liu C C, Chen C 2013 Ultrasound Med. Biol. 39 1751Google Scholar

    [6]

    Liu C C, Tang T, Xu F, Ta D A, Matsukawa M, Hu B, Wang W Q 2015 Ultrasound Med. Biol. 41 2714Google Scholar

    [7]

    刘珍黎, 宋亮华, 白亮, 许凯亮, 他得安 2017 物理学报 66 154303Google Scholar

    Liu Z L, Song L H, Bai L, Xu K L, Ta D A 2017 Acta Phys. Sin. 66 154303Google Scholar

    [8]

    张正罡, 他得安 2012 物理学报 61 134304Google Scholar

    Zhang Z G, Ta D A 2012 Acta Phys. Sin. 61 134304Google Scholar

    [9]

    Xu K L, Liu C C, Ta D A 2013 35th Annual International Conference of the IEEE EMBC Osaka, Japan July 3−7, 1930 p13812291

    [10]

    张锐 2000 物理学报 49 1297Google Scholar

    Zhang R 2000 Acta Phys. Sin. 49 1297Google Scholar

    [11]

    赵贵敏, 陆明珠, 万明习, 方莉 2009 物理学报 58 6596Google Scholar

    Zhao G M, Lu M Z, Wan M X, Fang L 2009 Acta Phys. Sin. 58 6596Google Scholar

    [12]

    Wear K A 2008 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 1432Google Scholar

    [13]

    Liu C C, Ta D A, Wang W Q 2014 Chin. J. Acoust. 33 73Google Scholar

    [14]

    Liu C C, Han H J, Ta D A, Wang W Q 2013 Sci. China: Phys. Mech. Astron. 56 1310

    [15]

    Liu C C, Ta D A, Hu B, Li H L, Wang W Q 2014 J. Appl. Phys. 116 124903Google Scholar

    [16]

    Wear K A 2007 J. Acoust. Soc. Am. 121 2431Google Scholar

    [17]

    He P, Greenleaf J F 1986 J. Accoust. Soc. Am. 79 526Google Scholar

    [18]

    Goutam G, Michael L O 2012 J. Acoust. Soc. Am. 132 533Google Scholar

    [19]

    Parker K J, Waag R C 1983 IEEE Trans. Biomed. Eng. BME 30 431

    [20]

    Kim H,Varghese T 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 510Google Scholar

    [21]

    Labyed Y, Bigelow T A 2010 J. Acoust. Soc. Am. 128 3232Google Scholar

    [22]

    Flax S W, Pelc N J, Glover G H, Gutmann F D, McLachlan M 1983 Ultrason. Imag. 5 95Google Scholar

    [23]

    Kuc R 1984 IEEE Trans. Acoust., Speech, Signal Process. 32 1

    [24]

    Insana M, Zagzebski J, Madsen E 1983 Ultrason. Imag. 5 331Google Scholar

    [25]

    Kim H, Varghese T 2008 Ultrasound Med. Biol. 34 1808Google Scholar

    [26]

    Labyed Y, Bigelow T A 2011 J. Acoust. Soc. Am. 129 2316

    [27]

    Langton C M, Palmer S B, Porter R W 1984 Eng. Med. 13 89Google Scholar

    [28]

    Prins S H, Jùrgensen H L, Jùrgensen L V, Hassager C 1998 Clin. Physiol. 18 3

    [29]

    Leeman S, Ferrari L, Jones J P, Fink M 1984 IEEE Trans. Son. Ultrason. 31 352Google Scholar

    [30]

    Liu C C, Dong R, Li B Y, Li Y, Xu F, Ta D A, Wang W Q 2019 Chin. Phys. B 28 024302Google Scholar

  • 图 2  松质骨样本的超声背散射信号(ROI, 感兴趣区域)

    Fig. 2.  Backscatter signal of cancellous bone sample (ROI, region of interest).

    图 1  超声测量实验装置图

    Fig. 1.  Experimental setup for ultrasonic measurements.

    图 3  频散衰减系数测量值与透射法频散衰减标准值的关系 (a)谱移法; (b)谱差法; (c)谱对数差法; (d)混合法

    Fig. 3.  Relationship between the measured frequency-dependent attenuation and the standard frequency-dependent attenuation: (a) the spectral shift method; (b) the spectral difference method; (c) the spectral log difference method; (d) the hybrid method.

    图 4  频散衰减补偿后的松质骨超声背散射信号

    Fig. 4.  Frequency-dependent attenuation compensated signal from cancellous bone.

    表 1  频散衰减系数测量结果

    Table 1.  Frequency-dependent attenuation coefficient measurement results.

    样本编号透射标准值/dB·mm–1·MHz–1背散射法测量值(相对误差)/dB·mm–1·MHz–1 (%)
    谱移法谱差法谱对数差法混合法
    12.302.74 (19.1)2.82 (22.4)2.77 (20.3)2.67 (16.2)
    22.632.49 (–5.3)2.85(8.3)3.13 (19.3)2.97 (13.1)
    32.822.39 (–15.3)2.97 (5.2)2.78 (–1.4)3.29 (16.6)
    43.063.04 (–0.6)2.77 (–9.4)3.02 (–1.4)3.02 (–1.3)
    53.102.95 (–4.6)2.84 (–8.3)3.39 (9.5)3.12 (0.8)
    63.302.96 (–10.3)3.38 (2.3)2.99 (-9.4)3.35 (1.7)
    74.142.93 (–29.2)3.94 (–4.9)4.21 (1.5)4.32 (4.3)
    84.303.06 (–28.9)4.75 (10.5)3.58 (–16.7)3.61 (–16.0)
    94.374.80 (9.8)3.89 (–11.0)3.66 (–16.2)4.75 (8.7)
    104.375.10 (–16.9)4.19 (–4.2)3.36 (–23.1)4.25 (–2.7)
    114.523.89 (–13.9)4.35 (–3.7)3.87 (–14.3)4.79 (6.0)
    124.835.35 (10.9)4.19 (–13.2)4.53 (–6.1)4.69 (–2.7)
    135.294.42 (–16.5)5.68 (7.3)6.08 (14.9)5.18 (–2.0)
    145.505.18 (–5.8)4.38 (–20.0)4.19 (–23.8)5.00 (–9.0)
    155.644.73 (–16.2)5.75 (1.9)3.96 (–29.9)5.08 (–9.9)
    166.196.02 (–2.8)5.25 (–15.3)4.79 (–22.6)4.76 (–23.1)
    平均值 (标准差)4.14 (1.14)3.88 (1.15)4.00 (0.98)3.77 (0.84)4.05 (0.85)
    下载: 导出CSV
  • [1]

    王牧 1997 临床医学影像杂志 8 87

    Wang M 1997 J. Chin. Clin. Med. Imaging 8 87

    [2]

    Hqrrar K, Hamami L, Lespessailles E, Jennane R 2013 Biomed. Signal Process. 8 657Google Scholar

    [3]

    他得安, 王威琪 2013 应用声学 32 199

    Ta D A, Wang W Q 2013 Appl. Acoust. 32 199

    [4]

    Liu C C, Ta D A, Wang W Q, Fujita F, Hachiken T, Matsukawa M, Mizuno K 2014 J. Appl. Phys. 115 064906Google Scholar

    [5]

    Zhang R, Ta D A, Liu C C, Chen C 2013 Ultrasound Med. Biol. 39 1751Google Scholar

    [6]

    Liu C C, Tang T, Xu F, Ta D A, Matsukawa M, Hu B, Wang W Q 2015 Ultrasound Med. Biol. 41 2714Google Scholar

    [7]

    刘珍黎, 宋亮华, 白亮, 许凯亮, 他得安 2017 物理学报 66 154303Google Scholar

    Liu Z L, Song L H, Bai L, Xu K L, Ta D A 2017 Acta Phys. Sin. 66 154303Google Scholar

    [8]

    张正罡, 他得安 2012 物理学报 61 134304Google Scholar

    Zhang Z G, Ta D A 2012 Acta Phys. Sin. 61 134304Google Scholar

    [9]

    Xu K L, Liu C C, Ta D A 2013 35th Annual International Conference of the IEEE EMBC Osaka, Japan July 3−7, 1930 p13812291

    [10]

    张锐 2000 物理学报 49 1297Google Scholar

    Zhang R 2000 Acta Phys. Sin. 49 1297Google Scholar

    [11]

    赵贵敏, 陆明珠, 万明习, 方莉 2009 物理学报 58 6596Google Scholar

    Zhao G M, Lu M Z, Wan M X, Fang L 2009 Acta Phys. Sin. 58 6596Google Scholar

    [12]

    Wear K A 2008 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 1432Google Scholar

    [13]

    Liu C C, Ta D A, Wang W Q 2014 Chin. J. Acoust. 33 73Google Scholar

    [14]

    Liu C C, Han H J, Ta D A, Wang W Q 2013 Sci. China: Phys. Mech. Astron. 56 1310

    [15]

    Liu C C, Ta D A, Hu B, Li H L, Wang W Q 2014 J. Appl. Phys. 116 124903Google Scholar

    [16]

    Wear K A 2007 J. Acoust. Soc. Am. 121 2431Google Scholar

    [17]

    He P, Greenleaf J F 1986 J. Accoust. Soc. Am. 79 526Google Scholar

    [18]

    Goutam G, Michael L O 2012 J. Acoust. Soc. Am. 132 533Google Scholar

    [19]

    Parker K J, Waag R C 1983 IEEE Trans. Biomed. Eng. BME 30 431

    [20]

    Kim H,Varghese T 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 510Google Scholar

    [21]

    Labyed Y, Bigelow T A 2010 J. Acoust. Soc. Am. 128 3232Google Scholar

    [22]

    Flax S W, Pelc N J, Glover G H, Gutmann F D, McLachlan M 1983 Ultrason. Imag. 5 95Google Scholar

    [23]

    Kuc R 1984 IEEE Trans. Acoust., Speech, Signal Process. 32 1

    [24]

    Insana M, Zagzebski J, Madsen E 1983 Ultrason. Imag. 5 331Google Scholar

    [25]

    Kim H, Varghese T 2008 Ultrasound Med. Biol. 34 1808Google Scholar

    [26]

    Labyed Y, Bigelow T A 2011 J. Acoust. Soc. Am. 129 2316

    [27]

    Langton C M, Palmer S B, Porter R W 1984 Eng. Med. 13 89Google Scholar

    [28]

    Prins S H, Jùrgensen H L, Jùrgensen L V, Hassager C 1998 Clin. Physiol. 18 3

    [29]

    Leeman S, Ferrari L, Jones J P, Fink M 1984 IEEE Trans. Son. Ultrason. 31 352Google Scholar

    [30]

    Liu C C, Dong R, Li B Y, Li Y, Xu F, Ta D A, Wang W Q 2019 Chin. Phys. B 28 024302Google Scholar

  • [1] 刘雨, 田强, 王新艳, 关雪飞. 基于单向测量超声背散射系数的晶粒尺寸评价高效方法. 物理学报, 2024, 73(7): 074301. doi: 10.7498/aps.73.20231959
    [2] 朱琦, 许多, 张元军, 李玉娟, 王文, 张海燕. 基于卷积神经网络的白蚀缺陷超声探测. 物理学报, 2022, 71(24): 244301. doi: 10.7498/aps.71.20221504
    [3] 王玉龙, 张晓虹, 李丽丽, 高俊国, 郭宁, 程成. 基于超声波声压衰减效应的局部放电源定位与强度标定. 物理学报, 2021, 70(9): 095209. doi: 10.7498/aps.70.20201727
    [4] 陈海霞, 林书玉. 超声在液体中的非线性传播及反常衰减. 物理学报, 2020, 69(13): 134301. doi: 10.7498/aps.69.20200425
    [5] 马天兵, 訾保威, 郭永存, 凌六一, 黄友锐, 贾晓芬. 基于拟合衰减差自补偿的分布式光纤温度传感器. 物理学报, 2020, 69(3): 030701. doi: 10.7498/aps.69.20191456
    [6] 王大为, 王召巴, 陈友兴, 李海洋, 王浩坤. 基于双高斯衰减模型的超声回波处理方法. 物理学报, 2019, 68(8): 084303. doi: 10.7498/aps.68.20182080
    [7] 倪龙, 陈晓. 基于频散补偿和分数阶微分的多模式兰姆波分离. 物理学报, 2018, 67(20): 204301. doi: 10.7498/aps.67.20180561
    [8] 杨瑞科, 李茜茜, 姚荣辉. 沙尘大气电磁波多重散射及衰减. 物理学报, 2016, 65(9): 094205. doi: 10.7498/aps.65.094205
    [9] 宋永锋, 李雄兵, 史亦韦, 倪培君. 表面粗糙度对固体内部超声背散射的影响. 物理学报, 2016, 65(21): 214301. doi: 10.7498/aps.65.214301
    [10] 何兴道, 夏健, 史久林, 刘娟, 李淑静, 刘建安, 方伟. 水的衰减系数及有效增益长度对受激布里渊散射输出能量的影响. 物理学报, 2011, 60(5): 054207. doi: 10.7498/aps.60.054207
    [11] 刘 娟, 白建辉, 倪 恺, 景红梅, 何兴道, 刘大禾. 受激布里渊散射对激光在水中衰减特性的影响. 物理学报, 2008, 57(1): 260-264. doi: 10.7498/aps.57.260
    [12] 赵 辉, 黄 健, 蓝 海, 董宝中. 大鼠骨质疏松模型的小角x射线散射研究. 物理学报, 2004, 53(6): 2005-2008. doi: 10.7498/aps.53.2005
    [13] 杜启振, 杨慧珠. 线性黏弹性各向异性介质速度频散和衰减特征研究. 物理学报, 2002, 51(9): 2101-2108. doi: 10.7498/aps.51.2101
    [14] 王 静, 方前锋, 朱震刚. 循环应变波形对铝疲劳过程中超声衰减的影响. 物理学报, 1998, 47(4): 559-563. doi: 10.7498/aps.47.559
    [15] 朱为勇, 王耀俊, 宁伟. 纤维复合媒质中的超声衰减. 物理学报, 1996, 45(1): 58-64. doi: 10.7498/aps.45.58
    [16] 王雅谷, 王业宁. 钼酸钆晶体铁弹相变的超声衰减和内耗. 物理学报, 1985, 34(4): 520-527. doi: 10.7498/aps.34.520
    [17] 潘正良, 王双全, 李广义. 钢在疲劳过程中的超声衰减. 物理学报, 1985, 34(1): 134-139. doi: 10.7498/aps.34.134
    [18] 杨瑞青, 熊诗杰, 蔡建华. 金属超晶格中的声衰减. 物理学报, 1984, 33(7): 1058-1061. doi: 10.7498/aps.33.1058
    [19] 赵玉芝, 冷忠昂. 反铁磁体中电磁振荡的频散和衰减. 物理学报, 1962, 18(3): 167-174. doi: 10.7498/aps.18.167
    [20] 魏荣爵. 低频声音在水雾中衰减的测量. 物理学报, 1954, 10(3): 187-208. doi: 10.7498/aps.10.187
计量
  • 文章访问数:  10379
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-23
  • 修回日期:  2019-06-20
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-20

/

返回文章
返回