搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面心立方Ce同构相变的分子动力学模拟

第伍旻杰 胡晓棉

引用本文:
Citation:

面心立方Ce同构相变的分子动力学模拟

第伍旻杰, 胡晓棉

Isostructural phase transition of fcc Ce: Molecular dynamics simulations

Diwu Min-Jie, Hu Xiao-Mian
PDF
HTML
导出引用
  • 基于嵌入原子法, 本文给出了一个金属Ce原子间的相互作用势. 利用该势分别计算了γ-Ce和α-Ce的晶格常数、结合能、弹性常数, 计算结果与实验或第一性原理研究中得出的数值符合得较好. 给出了两相Ce中如点缺陷形成能、表面能、层错能以及孪晶能等晶体缺陷形成能. 通过分析两相Ce的声子谱, 得出了不同温度下两相的晶格振动熵差, 其中在室温条件下约为0.67kB/atom. 还利用分子动力学模拟得出了该相变的等温线, 并且利用径向分布函数分析了相变前后两相的晶体结构, 确认了该相变为面心立方同构相变, 即Ce的α-γ相变. 由此表明, 本文的嵌入原子法势, 不仅可以分别合理地描述γ-Ce和α-Ce, 还可以反映γ-Ce和α-Ce两相之间的相变.
    Ce is a rare earth element in the periodic table. In the range of low temperature and low pressure, there are two face-centered-cubic (FCC) phases (α-Ce and γ-Ce) and a double-hexagonal-close-packed phase (β-Ce) for metallic Ce. At ambient temperature and about 0.7 GPa pressure, Ce undergoes γα phase transition with a volume shrink of 14%–17% discontinuously. In this paper, an embedded-atom method (EAM) potential compatible for α-Ce and γ-Ce was developed. This EAM potential has been employed to study several basic properties of cerium in these two FCC phases, such as equilibrium lattice constants, cohesive energies, and elastic constants. These results showed good accordance with experiments and first principle calculations. The lattice defects have been studied with the formation energy calculations of vacancies, interstitials, surfaces, stacking faults, and twinning defects in α-Ce and γ-Ce lattice. The lattice dynamics of α-Ce and γ-Ce have been analyzed using our EAM potential. The lattice vibrational entropy was calculated and plotted as functions of temperature for each phases. The vibrational entropy change across the α-γ phase transition showed to be ~0.67 kB per atom at ambient temperature. Using molecular dynamics simulation with our EAM potential, several isotherms and radial distribution functions were calculated. These isotherms and radial distribution functions demonstrate a first order phase transition between two FCC structures, corresponding to α-Ce and γ-Ce, with a critical point sets at Tc≈550 K and Pc≈1.21 GPa. Thus the newly developed EAM potential could provide a reasonable description of FCC Ce and its α-γ phase transition within the scale of classical molecular dynamics simulation.
      通信作者: 胡晓棉, hu_xiaomian@iapcm.ac.cn
      Corresponding author: Hu Xiao-Mian, hu_xiaomian@iapcm.ac.cn
    [1]

    郑海冰 2017 硕士学位论文 (哈尔滨: 哈尔滨工业大学

    Zheng H B 2017 M. S. Thesis (Harbin: Harbin Institute of Technoloty) (in Chinese)

    [2]

    金铭 2018 硕士学位论文 (哈尔滨: 哈尔滨工业大学

    Jin M 2018 M. S. Thesis (Harbin: Harbin Institute of Technoloty) (in Chinese)

    [3]

    林河成 2005 中国有色冶金 3 31Google Scholar

    Lin H C 2005 China Nonferrous Metallurgy 3 31Google Scholar

    [4]

    Koskenmaki D C, Gschneidner K A 1978 Handbook on the Physics and Chemistry of Rare Earths (Vol. 1) (Amsterdam: Elsevier North-Holland) pp337–377

    [5]

    潘昊, 胡晓棉, 吴子辉, 戴诚达, 吴强 2012 物理学报 61 206401Google Scholar

    Pan H, Hu X M, Wu Z H, Dai C D, Wu Q 2012 Acta Phys. Sin. 61 206401Google Scholar

    [6]

    Wang Y, Jr Hector L G, Zhang H, Shang S L, Chen L Q, Liu Z K 2008 Phys. Rev. B 78 104113Google Scholar

    [7]

    Decremps F, Belhadi L, Farber D L, Moore K T, Occelli F, Gauthier M, Polian A, Antonangeli D, Aracne-Ruddle C M, Amadon B 2011 Phys. Rev. Lett. 106 065701

    [8]

    Lipp M J, Jackson D, Cynn H, Aracne C, Evans W J, McMahan A K 2008 Phys. Rev. Lett. 101 165703Google Scholar

    [9]

    Johansson B 1974 Philos. Mag. 30 469Google Scholar

    [10]

    Allen J W, Martin R M 1982 Phys. Rev. Lett. 49 1106Google Scholar

    [11]

    Casadei M, Ren X, Rinke P, Rubio A, Scheffler M 2016 Phys. Rev. B 93 075153Google Scholar

    [12]

    Amadon B, Biermann S, Georges A, Aryasetiawan F 2006 Phys. Rev. Lett. 96 066402Google Scholar

    [13]

    Jeong I K, Darling T W, Graf M J, Proffen T, Heffner R H, Lee Y, Vogt T, Jorgensen J D 2004 Phys. Rev. Lett. 92 105702Google Scholar

    [14]

    El'kin V M, Kozlov E A, Kakshina E V, Moreva Y S 2006 Phys. Met. Metall. 101 208Google Scholar

    [15]

    El'kin V M, Mikhaylov V N, Petrovtsev A V, Cherne F J 2011 Phys. Rev. B 84 094120Google Scholar

    [16]

    Yelkin V M, Kozlov E A, Kakshina E V, Moreva Y S 2006 Shock Compression of Condensed Matter2005 Baltimore, Maryland 31 July–5 August, 2005 pp77–80

    [17]

    Casadei M, Ren X, Rinke P, Rubio A, Scheffler M 2012 Phys. Rev. Lett. 109 146402Google Scholar

    [18]

    Huang L, Chen CA 2007 J. Phys.Condens. Matter 19 476206Google Scholar

    [19]

    Krisch M, Farber D L, Xu R, Antonangeli D, Aracne C M, Beraud A, Chiang T-C, Zarestky J, Kim D Y, Isaev E I, Ahuja R, Johansson B 2011 Proc. Natl. Acad. Sci. U.S.A. 108 9342Google Scholar

    [20]

    Singh N, Singh S P 1990 Phys. Rev. B 42 1652Google Scholar

    [21]

    Hachiya K, Ito Y 1999 J. Phys. Condens. Matter 11 6543Google Scholar

    [22]

    Sheng H W, Kramer M J, Cadien A, Fujita T, Chen M W 2011 Phys. Rev. B 83 134118Google Scholar

    [23]

    Fu J, Zhao J 2013 Modell. Simul. Mater. Sci. Eng. 21 065003Google Scholar

    [24]

    Voter A F, Chen S P 1986 MRS Proceedings 82 175Google Scholar

    [25]

    Dupont V, Chen S P, Germann T C 2010 EPJ Web of Conferences Paris, France, May 24–28, 2010 p00009

    [26]

    Dupont V, Germann T C 2010 APS March Meeting Portland, Oregon, March 15–19, 2010 W30.00007

    [27]

    Rose J H, Smith J R, Guinea F, Ferrante J 1984 Phys. Rev. B 29 2963

    [28]

    Duff A I, Finnis M W, Maugis P, Thijsse B J, Sluiter M H F 2015 Comput. Phys. Commun. 196 439Google Scholar

    [29]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [30]

    Eriksson O, Brooks M S S, Johansson B 1990 Phys. Rev. B 41 7311Google Scholar

    [31]

    Greiner J D, McMasters O D, Smith J F 1980 Scr. Metall. 14 989Google Scholar

    [32]

    Staun Olsen J, Gerward L, Dancausse J P, Gering E 1993 Physica B 190 92Google Scholar

    [33]

    Voronov F F, Goncharova V A, Stal'gorova O V 1979 Soviet Phys. JETP 49 687

    [34]

    Söderlind P, Eriksson O, Wills J M, Boring A M 1993 Phys. Rev. B 48 9306Google Scholar

    [35]

    Korzhavyi P A, Abrikosov I A, Johansson B, Ruban A V, Skriver H L 1999 Phys. Rev. B 59 11693Google Scholar

    [36]

    Press W H, Teukolsky S A, Vetterling W T, Flannery B P 2007 Numerical Recipes: The Art of Scientific Computing (3rd Ed.) (New York: Cambridge University Press) pp487–562

    [37]

    Östlin A, Di Marco I, Locht I L M, Lashley J C, Vitos L 2016 Phys. Rev. B 93 094103Google Scholar

    [38]

    van Swygenhoven H, Derlet P M, Frøseth A G 2004 Nat. Mater. 3 399Google Scholar

    [39]

    Hai S, Tadmor E B 2003 Acta Mater. 51 117Google Scholar

    [40]

    Tadmor E, Hai S 2003 J. Mech. Phys. Solids 51 765Google Scholar

    [41]

    Stassis C, Gould T, McMasters O D, Gschneidner K A, Nicklow R M 1979 Phys. Rev. B 19 5746Google Scholar

  • 图 1  Ce的EAM势 (a)对势函数和电子密度分布函数; (b)嵌入能函数

    Fig. 1.  EAM potential for Ce: (a) The pair function Φ(rij) and the density function f(rij); (b) the embedded function F(ρ).

    图 2  由本文EAM势得出的面心立方Ce的冷能曲线

    Fig. 2.  The cold energy of fcc Ce calculated with the newly developed EAM potential.

    图 3  面心立方Ce中的广义层错能和广义孪晶能 (a) α-Ce; (b) γ-Ce

    Fig. 3.  Generalized stacking fault energy and generalized twining fault energy curve for (a) α-Ce and (b) γ-Ce.

    图 4  面心立方Ce的声子态密度

    Fig. 4.  Phonon density of states for FCC Ce.

    图 5  α-Ce和γ-Ce两相的晶格振动熵Svib以及熵差ΔSvib (右下插图)随温度T的变化

    Fig. 5.  The vibrational entropy Svib and its change ΔSvib between two phases (the inset) plotted as functions of temperature.

    图 6  面心立方Ce的声子色散谱

    Fig. 6.  Phonon dispersion relations for FCC Ce.

    图 7  面心立方Ce的等温线 (a) NPT增压; (b) NPT减压; (c) NVT

    Fig. 7.  Isotherms of FCC Ce: (a) NPT, pressure increased; (b) NPT, pressure decreased; (c) NVT.

    图 8  Ce的γααγ相变路径

    Fig. 8.  The path of Ce γα and αγ phase transition.

    图 9  零压以及图7A, B两点状态的径向分布函数

    Fig. 9.  Radial distribution function for zero pressure (black), the A state (red), and the B state (blue) pointed in Fig.7.

    表 1  面心立方Ce的基本性质的EAM计算值与实验和第一性原理结果的比较

    Table 1.  EAM predicted properties of Ce lattice in comparison with experimental and ab initiodata.

    γ-Ceα-Ce
    实验第一性原理本文EAM实验第一性原理本文EAM
    a05.16[4]5.22[11]5.144.84[4] 4.90[30]4.63[11]4.81
    Ecoh/eV4.32[4]4.35[11]4.324.3[11]3.76[11]4.3255
    体弹模量/GPa18.18[31]28.3[11]16.7835.0[32], 16.94[33]37.0[34]37.00
    c11 /GPa26.01[31]23.0652.9[34]59.77
    c12 /GPa14.26[31]13.6429.1[34]25.62
    c44 /GPa17.30[31]17.6444.6[34]49.98
    剪切模量/GPa12.73[31]12.4717.26[33]36.82
    下载: 导出CSV

    表 2  γ-Ce and α-Ce中晶体缺陷的形成能

    Table 2.  Calculated formation energy of lattice defectsin γ-Ce and α-Ce.

    γ-Ceα-Ce
    之前的结果本文EAM之前的结果本文EAM
    Eif/eV3.3[22]1.932.97
    Evf/eV0.75[22], 2.02[23]0.851.15
    γ(100)/mJ·m–2697[22], 2140[23]391308
    γ(110)/mJ·m–2797[22], 2220[23]442390
    γ(111)/mJ·m–2586[22], 2190[23]297195
    γssf/mJ·m–2486[22],58[37], 16[37], –0.2[37]457301[37], 311[37], 369[37]734
    γusf/mJ·m–2501[22]543822
    γutf/mJ·m–212[22]7681167
    下载: 导出CSV
  • [1]

    郑海冰 2017 硕士学位论文 (哈尔滨: 哈尔滨工业大学

    Zheng H B 2017 M. S. Thesis (Harbin: Harbin Institute of Technoloty) (in Chinese)

    [2]

    金铭 2018 硕士学位论文 (哈尔滨: 哈尔滨工业大学

    Jin M 2018 M. S. Thesis (Harbin: Harbin Institute of Technoloty) (in Chinese)

    [3]

    林河成 2005 中国有色冶金 3 31Google Scholar

    Lin H C 2005 China Nonferrous Metallurgy 3 31Google Scholar

    [4]

    Koskenmaki D C, Gschneidner K A 1978 Handbook on the Physics and Chemistry of Rare Earths (Vol. 1) (Amsterdam: Elsevier North-Holland) pp337–377

    [5]

    潘昊, 胡晓棉, 吴子辉, 戴诚达, 吴强 2012 物理学报 61 206401Google Scholar

    Pan H, Hu X M, Wu Z H, Dai C D, Wu Q 2012 Acta Phys. Sin. 61 206401Google Scholar

    [6]

    Wang Y, Jr Hector L G, Zhang H, Shang S L, Chen L Q, Liu Z K 2008 Phys. Rev. B 78 104113Google Scholar

    [7]

    Decremps F, Belhadi L, Farber D L, Moore K T, Occelli F, Gauthier M, Polian A, Antonangeli D, Aracne-Ruddle C M, Amadon B 2011 Phys. Rev. Lett. 106 065701

    [8]

    Lipp M J, Jackson D, Cynn H, Aracne C, Evans W J, McMahan A K 2008 Phys. Rev. Lett. 101 165703Google Scholar

    [9]

    Johansson B 1974 Philos. Mag. 30 469Google Scholar

    [10]

    Allen J W, Martin R M 1982 Phys. Rev. Lett. 49 1106Google Scholar

    [11]

    Casadei M, Ren X, Rinke P, Rubio A, Scheffler M 2016 Phys. Rev. B 93 075153Google Scholar

    [12]

    Amadon B, Biermann S, Georges A, Aryasetiawan F 2006 Phys. Rev. Lett. 96 066402Google Scholar

    [13]

    Jeong I K, Darling T W, Graf M J, Proffen T, Heffner R H, Lee Y, Vogt T, Jorgensen J D 2004 Phys. Rev. Lett. 92 105702Google Scholar

    [14]

    El'kin V M, Kozlov E A, Kakshina E V, Moreva Y S 2006 Phys. Met. Metall. 101 208Google Scholar

    [15]

    El'kin V M, Mikhaylov V N, Petrovtsev A V, Cherne F J 2011 Phys. Rev. B 84 094120Google Scholar

    [16]

    Yelkin V M, Kozlov E A, Kakshina E V, Moreva Y S 2006 Shock Compression of Condensed Matter2005 Baltimore, Maryland 31 July–5 August, 2005 pp77–80

    [17]

    Casadei M, Ren X, Rinke P, Rubio A, Scheffler M 2012 Phys. Rev. Lett. 109 146402Google Scholar

    [18]

    Huang L, Chen CA 2007 J. Phys.Condens. Matter 19 476206Google Scholar

    [19]

    Krisch M, Farber D L, Xu R, Antonangeli D, Aracne C M, Beraud A, Chiang T-C, Zarestky J, Kim D Y, Isaev E I, Ahuja R, Johansson B 2011 Proc. Natl. Acad. Sci. U.S.A. 108 9342Google Scholar

    [20]

    Singh N, Singh S P 1990 Phys. Rev. B 42 1652Google Scholar

    [21]

    Hachiya K, Ito Y 1999 J. Phys. Condens. Matter 11 6543Google Scholar

    [22]

    Sheng H W, Kramer M J, Cadien A, Fujita T, Chen M W 2011 Phys. Rev. B 83 134118Google Scholar

    [23]

    Fu J, Zhao J 2013 Modell. Simul. Mater. Sci. Eng. 21 065003Google Scholar

    [24]

    Voter A F, Chen S P 1986 MRS Proceedings 82 175Google Scholar

    [25]

    Dupont V, Chen S P, Germann T C 2010 EPJ Web of Conferences Paris, France, May 24–28, 2010 p00009

    [26]

    Dupont V, Germann T C 2010 APS March Meeting Portland, Oregon, March 15–19, 2010 W30.00007

    [27]

    Rose J H, Smith J R, Guinea F, Ferrante J 1984 Phys. Rev. B 29 2963

    [28]

    Duff A I, Finnis M W, Maugis P, Thijsse B J, Sluiter M H F 2015 Comput. Phys. Commun. 196 439Google Scholar

    [29]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [30]

    Eriksson O, Brooks M S S, Johansson B 1990 Phys. Rev. B 41 7311Google Scholar

    [31]

    Greiner J D, McMasters O D, Smith J F 1980 Scr. Metall. 14 989Google Scholar

    [32]

    Staun Olsen J, Gerward L, Dancausse J P, Gering E 1993 Physica B 190 92Google Scholar

    [33]

    Voronov F F, Goncharova V A, Stal'gorova O V 1979 Soviet Phys. JETP 49 687

    [34]

    Söderlind P, Eriksson O, Wills J M, Boring A M 1993 Phys. Rev. B 48 9306Google Scholar

    [35]

    Korzhavyi P A, Abrikosov I A, Johansson B, Ruban A V, Skriver H L 1999 Phys. Rev. B 59 11693Google Scholar

    [36]

    Press W H, Teukolsky S A, Vetterling W T, Flannery B P 2007 Numerical Recipes: The Art of Scientific Computing (3rd Ed.) (New York: Cambridge University Press) pp487–562

    [37]

    Östlin A, Di Marco I, Locht I L M, Lashley J C, Vitos L 2016 Phys. Rev. B 93 094103Google Scholar

    [38]

    van Swygenhoven H, Derlet P M, Frøseth A G 2004 Nat. Mater. 3 399Google Scholar

    [39]

    Hai S, Tadmor E B 2003 Acta Mater. 51 117Google Scholar

    [40]

    Tadmor E, Hai S 2003 J. Mech. Phys. Solids 51 765Google Scholar

    [41]

    Stassis C, Gould T, McMasters O D, Gschneidner K A, Nicklow R M 1979 Phys. Rev. B 19 5746Google Scholar

  • [1] 张晓军, 王安祥, 严祥安, 陈长乐. 改进分析型嵌入原子法在W(100)表面声子谱中的应用. 物理学报, 2020, 69(7): 076301. doi: 10.7498/aps.69.20191910
    [2] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟. 物理学报, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [3] 田晓林, 赵宇宏, 田晋忠, 侯华. 原子间相互作用势对中Al浓度Ni75AlxV25-x合金沉淀序列的影响. 物理学报, 2018, 67(23): 230201. doi: 10.7498/aps.67.20181366
    [4] 孙素蓉, 王海兴. 惰性气体原子间相互作用势比较研究. 物理学报, 2015, 64(14): 143401. doi: 10.7498/aps.64.143401
    [5] 赵健东, 辛洁. 高激发态原子间的范德瓦尔斯相互作用. 物理学报, 2014, 63(13): 133201. doi: 10.7498/aps.63.133201
    [6] 王晓璐, 令狐荣锋, 宋晓书, 吕兵, 杨向东. 氦原子与卤族氢化物分子相互作用势的研究. 物理学报, 2013, 62(16): 163101. doi: 10.7498/aps.62.163101
    [7] 令狐荣锋, 徐梅, 吕兵, 宋晓书, 杨向东. He原子与N2分子相互作用势的理论研究. 物理学报, 2013, 62(1): 013103. doi: 10.7498/aps.62.013103
    [8] 安荣, 刘威, 王春青, 田艳红. Sn的分析型键级势. 物理学报, 2013, 62(12): 128101. doi: 10.7498/aps.62.128101
    [9] 潘昊, 胡晓棉, 吴子辉, 戴诚达, 吴强. 铈低压冲击相变数值模拟研究. 物理学报, 2012, 61(20): 206401. doi: 10.7498/aps.61.206401
    [10] 敖冰云, 汪小琳, 陈丕恒, 史鹏, 胡望宇, 杨剑瑜. 嵌入原子法计算金属钚中点缺陷的能量. 物理学报, 2010, 59(7): 4818-4825. doi: 10.7498/aps.59.4818
    [11] 陈怡, 申江. NaZn13型Fe基化合物的结构和热力学性质研究. 物理学报, 2009, 58(13): 141-S145. doi: 10.7498/aps.58.141
    [12] 陈怡, 申江. 稀土金属间化合物RFe2Zn20-xInx的结构属性研究. 物理学报, 2009, 58(13): 146-S150. doi: 10.7498/aps.58.146
    [13] 江慧丰, 张青川, 陈学东, 范志超, 陈忠家, 伍小平. 位错与溶质原子间动态相互作用的数值模拟研究. 物理学报, 2007, 56(6): 3388-3392. doi: 10.7498/aps.56.3388
    [14] 王永亮, 张 超, 唐 鑫, 张庆瑜. 表面Cu原子间相互作用对Cu(001)表面跳跃扩散行为的影响. 物理学报, 2006, 55(8): 4214-4220. doi: 10.7498/aps.55.4214
    [15] 李 明, 孙久勋. 原子间相互作用对光场和原子激光压缩性质的影响. 物理学报, 2006, 55(6): 2702-2707. doi: 10.7498/aps.55.2702
    [16] 周明, 黄春佳. 原子间相互作用对原子激光压缩性质的影响. 物理学报, 2004, 53(1): 54-57. doi: 10.7498/aps.53.54
    [17] 张建民, 徐可为, 马 飞. 用改进嵌入原子法计算Cu晶体的表面能. 物理学报, 2003, 52(8): 1993-1999. doi: 10.7498/aps.52.1993
    [18] 李 泌. 铁的原子间相互作用及声子谱. 物理学报, 2000, 49(9): 1692-1695. doi: 10.7498/aps.49.1692
    [19] 万钧, 申三国, 范希庆. Cu表面弛豫和自扩散机制的修正嵌入原子法模拟. 物理学报, 1997, 46(6): 1161-1167. doi: 10.7498/aps.46.1161
    [20] 刘家瑞, 张建华, 李毅. 晶格原子间非简谐相互作用对离子注入的影响. 物理学报, 1989, 38(9): 1400-1405. doi: 10.7498/aps.38.1400
计量
  • 文章访问数:  11578
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-06
  • 修回日期:  2019-08-09
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-20

/

返回文章
返回