搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单端驱动银球腔的激光能量耦合和分配

余波 尹传盛 孙传奎 侯立飞 宋天明 杜华冰 关赞洋 张文海 袁铮 李朝光 董云松 蒋炜 黄天晅 蒲昱东 晏骥 陈忠靖 杨家敏 江少恩

引用本文:
Citation:

单端驱动银球腔的激光能量耦合和分配

余波, 尹传盛, 孙传奎, 侯立飞, 宋天明, 杜华冰, 关赞洋, 张文海, 袁铮, 李朝光, 董云松, 蒋炜, 黄天晅, 蒲昱东, 晏骥, 陈忠靖, 杨家敏, 江少恩

Laser energy coupling and partitioning of silver spheral hohlraum with one laser entrance hole

Yu Bo, Yin Chuan-Sheng, Sun Chuan-Kui, Hou Li-Fei, Song Tian-Ming, Du Hua-Bing, Guan Zan-Yang, Zhang Wen-Hai, Yuan Zheng, Li Chao-Guang, Dong Yun-Song, Jiang Wei, Huang Tian-Xuan, Pu Yu-Dong, Yan Ji, Chen Zhong-Jing, Yang Jia-Min, Jiang Shao-En
PDF
HTML
导出引用
  • 将高功率激光注入单孔球形银黑腔, 产生的高温辐射源能够驱动超声速冲击波, 在实验室模拟各种天体物理现象. 利用神光Ⅲ原型装置上四路3.2 kJ激光, 聚焦注入Φ800 μm、注入口Φ650 μm的球形银腔, 可以产生峰值温度为240 eV的高温辐射源, 驱动剩余球壳在气体区产生超声速冲击波. 实验结果显示, 银腔的激光-X光转换效率为0.68, 银反照率为0.83. 散射光份额约为15%, 超热电子份额小于1%, 从注入口漏失的辐射流约占总能量的30%, 从厚度5.6 μm的Ag和10 μm的CH球壳漏失的辐射流约占总能量的9%, 约45%的能量转换为剩余球壳的动能和内能. 黑腔等离子体约在950 ps开始聚心, 基本不会影响1 ns脉宽激光注入. 在神光Ⅲ原型装置开展的银球腔激光能量耦合和分配实验, 为后续超声速冲击波实验奠定了基础.
    The matter can be instantaneously heated up to a high energy density state by the high power laser. When the high power laser is injected into silver spherical hohlraum, the high temperature radiation source formed in the hohlraum can drive the high velocity blast wave in the laboratory to study various astrophysical phenomena such as supernova remnants, stellar jets, etc. As the basis of laser driven blast wave experiments, the first experimental results of energy coupling and partitioning of silver spherical hohlraum with one laser entrance hole (LEH) on Shenguang Ⅲ prototype laser facility are introduced in this work. Four beams with 3.2 kJ of laser energy in a 1ns square laser pulse from the upper hemisphere are used to heat the silver spherical hohlraum targets. The silver spherical hohlraum targets are 800 μm-diameter and 650 μm-diameter LEH, and are fabricated by electroforming silver onto an acrylic mandrel. The laser coupling and partitioning to the targets are investigated by using the optical and X-ray diagnostics. The experimental results show that the radiation temperature is beyond 240 eV, the laser-to-X-ray conversion efficiency of silver hohlraum is 0.68 and the silver albedo is 0.83. With the driving of the high temperature radiation source, most of laser energy is coupled to the residual shell, and the high velocity blast wave can be generated. The laser energy not coupled to the target is lost through scattering light, emitting hot electrons and radiating X-rays. The experimental results show that the fraction of energy lost due to the scattering light is 15%, that due to emitting the total hot electrons is less than 1%, almost 30% of the laser energy is lost from the LEH by radiating the X-ray flux, almost 9% of the laser energy leaks from the spherical shell consisting of the 5.6 μm-thick Ag layer and 10 μm-thick CH layer through the X-ray radiation flux, and 45% of the laser energy is converted into the kinetic energy and internal energy of the remaining spherical shell. Therefore, more than 50% of the laser energy will be used to drive the high velocity blast wave in the subsequent experiments. After 950 ps, the silver plasma is concentrated in the center of the silver spherical hohlraum, which does not affect the injection of 1ns laser. The experiment on energy coupling and partitioning of a spherical silver hohlraum laser is carried out for the first time on Shenguang Ⅲ prototype laser facility, which lays a foundation for the subsequent experiments on laser driven blast wave.
      通信作者: 余波, yubobnu@163.com
      Corresponding author: Yu Bo, yubobnu@163.com
    [1]

    Remington B A, Drake R P, Ryutov D D 2006 Rev. Mod. Phys. 78 755Google Scholar

    [2]

    Sanz J, Bouquet S E, Michaut C, Miniere J 2016 Phys. Plasmas 23 062114Google Scholar

    [3]

    Kuranz C C, Park H S, Remington B A, et al. 2011 Astrophys. Space Sci. 336 207Google Scholar

    [4]

    Edens A D, Adams R G, Rambo P, Ruggles L, Smith I C, Porter J L, Ditmire T 2010 Phys. Plasmas 17 112104Google Scholar

    [5]

    Hansen J F, Edwards M J, Froula D H, Gregori G, Edens A D, Ditmire T 2006 Phys. Plasmas 13 022105Google Scholar

    [6]

    Meinecke J, Doyle H W, Miniati F, et al. 2014 Nat. Phys. 10 520Google Scholar

    [7]

    Shigemori K, Ditmire T, Remington B A, Yanovsky V, Ryutov D, Estabrook K, Edwards M J, MacKinnon A J, Rubenchik A M, Keilty K A, Liang E 2000 Astrophys. J. 533 L159Google Scholar

    [8]

    Edwards M J, MacKinnon A J, Zweiback J, Shigemori K, Ryutov D, Rubenchik A M, Keilty K A, Liang E, Remington B A, Ditmire T 2001 Phys. Rev. Lett. 87 085004Google Scholar

    [9]

    Bouquet S, Stehle C, Koenig M, Chieze J P, Benuzzi-Mounaix A, Batani D, Leygnac S, Fleury X, Merdji H, Michaut C, Thais F, Grandjouan N, Hall T, Henry E, Malka V, Lafon J P 2004 Phys. Rev. Lett. 92 225001Google Scholar

    [10]

    Grun J, Stamper J, Manka C, Resnic J, Burris R, Ripin B H 1991 Appl. Phys. Lett. 59 246Google Scholar

    [11]

    Edens A D, Ditmire T, Hansen J F, Edwards M J, Adams R G, Rambo P, Ruggles L, Smith I C, Porter J L 2004 Phys. Plasmas 11 4968Google Scholar

    [12]

    Tubman E R, Scott R H H, Doyle H W, Meinecke J, Ahmed H, Alraddadi R A B, Bolis R, Cross J E, Crowston R, Doria D, Lamb D, Reville B, Robinson A P L, Tzeferacos P, Borghesi M, Gregori G, Woolsey N C 2017 Phys. Plasmas 24 103124Google Scholar

    [13]

    Fournier K B, Brown C G, May M J, Compton S, Walton O R, Shingleton N, Kane J O, Holtmeier G, Loey H, Mirkarimi P B, Dunlop WH, Guyton R L, Huffman E 2014 Rev. Sci. Instrum. 85 095119Google Scholar

    [14]

    He X T, Zhang W Y 2007 Eur. Phys. J. D 44 227Google Scholar

    [15]

    Giraldez E M, Mirkarimi P B, Emig J A, et al. 2013 Fusion Sci. Technol. 63 242Google Scholar

    [16]

    Schneider M B, Jones O S, Meezan N B, et al. 2010 Rev. Sci. Instrum. 81 10E538Google Scholar

    [17]

    王峰, 彭晓世, 杨冬, 李志超, 徐涛, 魏惠月, 刘慎业 2013 物理学报 62 175202Google Scholar

    Wang F, Peng X S, Yang D, Li Z C, Xu T, Wei H Y, Liu S Y 2013 Acta Phys. Sin. 62 175202Google Scholar

    [18]

    Li Z C, Jiang X H, Liu S Y, Huang T X, Zheng J, Yang J M, Li S W, Guo L, Zhao X F, Du H B, Song T M, Yi R Q, Liu Y G, Jiang S E, Ding Y K 2010 Rev. Sci. Instrum. 81 073504Google Scholar

    [19]

    Dewald E L, Campbell K M, Turner R E, Holder J P, Landen O L, Glenzer S H, Kauffman R L, Suter L J, Landon M, Rhodes M, Lee D 2004 Rev. Sci. Instrum. 75 3759Google Scholar

    [20]

    尚万里, 朱托, 熊刚, 赵阳, 张文海, 易荣清, 况龙钰, 曹磊峰, 高宇林, 杨家敏, 赵屹东, 崔明启, 郑雷, 韩勇, 周克瑾, 马陈燕 2011 物理学报 60 034216Google Scholar

    Shang W L, Zhu T, Xiong G, Zhao Y, Zhang W H, Yi R Q, Kuang L Y, Cao L F, Gao Y L, Yang J M, Zhao Y D, Cui M Q, Zheng L, Han Y, Zhou K J, Ma C Y 2011 Acta Phys. Sin. 60 034216Google Scholar

    [21]

    Mcdonald J W, Kauffman R L, Celeste J R, Rhodes M A, Lee F D, Suter L J, Lee A P, Foster J M, Slark G 2004 Rev. Sci. Instrum. 75 3753Google Scholar

    [22]

    曹柱荣, 缪文勇, 董建军, 袁永腾, 杨正华, 袁铮, 张海鹰, 刘慎业, 江少恩, 丁永坤 2012 物理学报 61 075213Google Scholar

    Cao Z R, Miao W Y, Dong J J, Yuan Y T, Yang Z H, Yuan Z, Zhang H Y, Liu S Y, Jiang S E, Ding Y K 2012 Acta Phys. Sin. 61 075213Google Scholar

    [23]

    李三伟, 杨冬, 李欣, 等 2018 中国科学: 物理学 力学 天文学 48 065202

    Li S W, Yang D, Li X, et al. 2018 Sci. China-Phys. Mech. Astron. 48 065202

    [24]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [25]

    May M J, Fournier K B, Brown C G, Dunlop W H, Kane J O, Mirkarimi P B, Moody J, Patterson J R, Schneider M, Widmann K, Giraldez E 2014 High Energy Density Phys. 11 45Google Scholar

    [26]

    Kemp G E, Colvin J D, Fournier K B, May M J, Barrios M A, Patel M V, Scott H A, Marinak M M 2015 Phys. Plasmas 22 053110Google Scholar

  • 图 1  实验和诊断排布

    Fig. 1.  Arranging for experiment and diagnosis.

    图 2  散射光份额测量结果

    Fig. 2.  Measurement results of scattering laser.

    图 3  辐射温度测量结果(a)及随角度变化规律(b)

    Fig. 3.  Measurement results (a) and angular dependence (b) of radiation temperature.

    图 4  辐射温度拟合结果

    Fig. 4.  Fitting results of radiation temperature.

    图 5  LEH和球壳漏失辐射流比较

    Fig. 5.  Loss radiation flux of LEH and shell.

    图 6  LEH和球壳漏失X射线能谱比较

    Fig. 6.  Radiation spectrum of LEH and shell.

    图 7  超热电子份额

    Fig. 7.  The fraction of hot electron.

    图 8  冕区等离子体聚心图像 (a) 550 ps; (b) 781 ps; (c) 893 ps; (d) 949 ps; (e) 1124 ps; (f) 1236 ps

    Fig. 8.  X-ray imaging of coronal plasma expansion: (a) 550 ps; (b) 781 ps; (c) 893 ps; (d) 949 ps; (e) 1124 ps; (f) 1236 ps.

  • [1]

    Remington B A, Drake R P, Ryutov D D 2006 Rev. Mod. Phys. 78 755Google Scholar

    [2]

    Sanz J, Bouquet S E, Michaut C, Miniere J 2016 Phys. Plasmas 23 062114Google Scholar

    [3]

    Kuranz C C, Park H S, Remington B A, et al. 2011 Astrophys. Space Sci. 336 207Google Scholar

    [4]

    Edens A D, Adams R G, Rambo P, Ruggles L, Smith I C, Porter J L, Ditmire T 2010 Phys. Plasmas 17 112104Google Scholar

    [5]

    Hansen J F, Edwards M J, Froula D H, Gregori G, Edens A D, Ditmire T 2006 Phys. Plasmas 13 022105Google Scholar

    [6]

    Meinecke J, Doyle H W, Miniati F, et al. 2014 Nat. Phys. 10 520Google Scholar

    [7]

    Shigemori K, Ditmire T, Remington B A, Yanovsky V, Ryutov D, Estabrook K, Edwards M J, MacKinnon A J, Rubenchik A M, Keilty K A, Liang E 2000 Astrophys. J. 533 L159Google Scholar

    [8]

    Edwards M J, MacKinnon A J, Zweiback J, Shigemori K, Ryutov D, Rubenchik A M, Keilty K A, Liang E, Remington B A, Ditmire T 2001 Phys. Rev. Lett. 87 085004Google Scholar

    [9]

    Bouquet S, Stehle C, Koenig M, Chieze J P, Benuzzi-Mounaix A, Batani D, Leygnac S, Fleury X, Merdji H, Michaut C, Thais F, Grandjouan N, Hall T, Henry E, Malka V, Lafon J P 2004 Phys. Rev. Lett. 92 225001Google Scholar

    [10]

    Grun J, Stamper J, Manka C, Resnic J, Burris R, Ripin B H 1991 Appl. Phys. Lett. 59 246Google Scholar

    [11]

    Edens A D, Ditmire T, Hansen J F, Edwards M J, Adams R G, Rambo P, Ruggles L, Smith I C, Porter J L 2004 Phys. Plasmas 11 4968Google Scholar

    [12]

    Tubman E R, Scott R H H, Doyle H W, Meinecke J, Ahmed H, Alraddadi R A B, Bolis R, Cross J E, Crowston R, Doria D, Lamb D, Reville B, Robinson A P L, Tzeferacos P, Borghesi M, Gregori G, Woolsey N C 2017 Phys. Plasmas 24 103124Google Scholar

    [13]

    Fournier K B, Brown C G, May M J, Compton S, Walton O R, Shingleton N, Kane J O, Holtmeier G, Loey H, Mirkarimi P B, Dunlop WH, Guyton R L, Huffman E 2014 Rev. Sci. Instrum. 85 095119Google Scholar

    [14]

    He X T, Zhang W Y 2007 Eur. Phys. J. D 44 227Google Scholar

    [15]

    Giraldez E M, Mirkarimi P B, Emig J A, et al. 2013 Fusion Sci. Technol. 63 242Google Scholar

    [16]

    Schneider M B, Jones O S, Meezan N B, et al. 2010 Rev. Sci. Instrum. 81 10E538Google Scholar

    [17]

    王峰, 彭晓世, 杨冬, 李志超, 徐涛, 魏惠月, 刘慎业 2013 物理学报 62 175202Google Scholar

    Wang F, Peng X S, Yang D, Li Z C, Xu T, Wei H Y, Liu S Y 2013 Acta Phys. Sin. 62 175202Google Scholar

    [18]

    Li Z C, Jiang X H, Liu S Y, Huang T X, Zheng J, Yang J M, Li S W, Guo L, Zhao X F, Du H B, Song T M, Yi R Q, Liu Y G, Jiang S E, Ding Y K 2010 Rev. Sci. Instrum. 81 073504Google Scholar

    [19]

    Dewald E L, Campbell K M, Turner R E, Holder J P, Landen O L, Glenzer S H, Kauffman R L, Suter L J, Landon M, Rhodes M, Lee D 2004 Rev. Sci. Instrum. 75 3759Google Scholar

    [20]

    尚万里, 朱托, 熊刚, 赵阳, 张文海, 易荣清, 况龙钰, 曹磊峰, 高宇林, 杨家敏, 赵屹东, 崔明启, 郑雷, 韩勇, 周克瑾, 马陈燕 2011 物理学报 60 034216Google Scholar

    Shang W L, Zhu T, Xiong G, Zhao Y, Zhang W H, Yi R Q, Kuang L Y, Cao L F, Gao Y L, Yang J M, Zhao Y D, Cui M Q, Zheng L, Han Y, Zhou K J, Ma C Y 2011 Acta Phys. Sin. 60 034216Google Scholar

    [21]

    Mcdonald J W, Kauffman R L, Celeste J R, Rhodes M A, Lee F D, Suter L J, Lee A P, Foster J M, Slark G 2004 Rev. Sci. Instrum. 75 3753Google Scholar

    [22]

    曹柱荣, 缪文勇, 董建军, 袁永腾, 杨正华, 袁铮, 张海鹰, 刘慎业, 江少恩, 丁永坤 2012 物理学报 61 075213Google Scholar

    Cao Z R, Miao W Y, Dong J J, Yuan Y T, Yang Z H, Yuan Z, Zhang H Y, Liu S Y, Jiang S E, Ding Y K 2012 Acta Phys. Sin. 61 075213Google Scholar

    [23]

    李三伟, 杨冬, 李欣, 等 2018 中国科学: 物理学 力学 天文学 48 065202

    Li S W, Yang D, Li X, et al. 2018 Sci. China-Phys. Mech. Astron. 48 065202

    [24]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar

    [25]

    May M J, Fournier K B, Brown C G, Dunlop W H, Kane J O, Mirkarimi P B, Moody J, Patterson J R, Schneider M, Widmann K, Giraldez E 2014 High Energy Density Phys. 11 45Google Scholar

    [26]

    Kemp G E, Colvin J D, Fournier K B, May M J, Barrios M A, Patel M V, Scott H A, Marinak M M 2015 Phys. Plasmas 22 053110Google Scholar

  • [1] 陶海岩, 陈锐, 宋晓伟, 陈亚楠, 林景全. 飞秒激光脉冲能量累积优化对黑硅表面形貌的影响. 物理学报, 2017, 66(6): 067902. doi: 10.7498/aps.66.067902
    [2] 蒙世坚, 黄展常, 甯家敏, 胡青元, 叶繁, 秦义, 许泽平, 徐荣昆. Z箍缩动态黑腔冲击波辐射图像诊断. 物理学报, 2016, 65(7): 075201. doi: 10.7498/aps.65.075201
    [3] 侯鹏程, 钟哲强, 文萍, 张彬. 激光间接驱动球形腔新型光路排布方案. 物理学报, 2016, 65(2): 024202. doi: 10.7498/aps.65.024202
    [4] 李树, 蓝可, 赖东显, 刘杰. 球形黑腔辐射输运问题的蒙特卡罗模拟. 物理学报, 2015, 64(14): 145203. doi: 10.7498/aps.64.145203
    [5] 宁成, 丰志兴, 薛创. Z箍缩驱动动态黑腔中的基本能量转移特征. 物理学报, 2014, 63(12): 125208. doi: 10.7498/aps.63.125208
    [6] 蒋树庆, 甯家敏, 陈法新, 叶繁, 薛飞彪, 李林波, 杨建伦, 陈进川, 周林, 秦义, 李正宏, 徐荣昆, 许泽平. Z箍缩动态黑腔动力学及辐射特性初步实验研究. 物理学报, 2013, 62(15): 155203. doi: 10.7498/aps.62.155203
    [7] 刘成, 王兆华, 沈忠伟, 张伟, 滕浩, 魏志义. 高能量环形长腔再生放大啁啾脉冲激光的研究. 物理学报, 2013, 62(9): 094209. doi: 10.7498/aps.62.094209
    [8] 岳平, 张强, 赵文, 王劲松, 王润元, 姚玉壁, 王胜, 郝小翠, 阳伏林, 王若安. 云和降水扰动对黄土高原半干旱草地辐射收支及能量分配的影响. 物理学报, 2013, 62(20): 209201. doi: 10.7498/aps.62.209201
    [9] 厉巧巧, 韩文鹏, 赵伟杰, 鲁妍, 张昕, 谭平恒, 冯志红, 李佳. 缺陷单层和双层石墨烯的拉曼光谱及其激发光能量色散关系. 物理学报, 2013, 62(13): 137801. doi: 10.7498/aps.62.137801
    [10] 毛明明, 徐晨, 魏思民, 解意洋, 刘久澄, 许坤. 质子注入能量对垂直腔面发射激光器的阈值和功率的影响. 物理学报, 2012, 61(21): 214207. doi: 10.7498/aps.61.214207
    [11] 刘超, 岑兆丰, 李晓彤, 许伟才, 尚红波, 能芬, 陈立. 关于部分偏振光能量传递和偏振态的光线椭圆分析方法. 物理学报, 2012, 61(13): 134201. doi: 10.7498/aps.61.134201
    [12] 李三伟, 宋天明, 易荣清, 崔延莉, 蒋小华, 王哲斌, 杨家敏, 江少恩. 神光Ⅱ激光装置黑腔辐射温度定量研究. 物理学报, 2011, 60(5): 055207. doi: 10.7498/aps.60.055207
    [13] 韩国霞, 韩一平. 激光对含偏心核球形粒子的辐射俘获力. 物理学报, 2009, 58(9): 6167-6173. doi: 10.7498/aps.58.6167
    [14] 李三伟, 易荣清, 蒋小华, 何小安, 崔延莉, 刘永刚, 丁永坤, 刘慎业, 蓝可, 李永升, 吴畅书, 古培俊, 裴文兵, 贺贤土. 神光Ⅲ原型1 ns激光驱动黑腔辐射温度实验研究. 物理学报, 2009, 58(5): 3255-3261. doi: 10.7498/aps.58.3255
    [15] 葛愉成. 高次谐波辐射光子的能量-激光相位关系研究. 物理学报, 2008, 57(5): 2899-2905. doi: 10.7498/aps.57.2899
    [16] 王可嘉, 刘劲松, 吕健滔. 双光子抽运随机激光器中辐射光能量的演化. 物理学报, 2007, 56(7): 3906-3910. doi: 10.7498/aps.56.3906
    [17] 孙可煦, 黄天晅, 丁永坤, 易荣清, 江少恩, 崔延莉, 汤晓青, 陈久森, 张保汉, 郑志坚. 黑腔靶辐射温度实验研究. 物理学报, 2002, 51(8): 1750-1754. doi: 10.7498/aps.51.1750
    [18] 丁迎春, 吕志伟, 何伟明. 种子光与抽运光能量比对布里渊放大的影响. 物理学报, 2002, 51(12): 2767-2771. doi: 10.7498/aps.51.2767
    [19] 丁永坤, 李文洪, 蒋小华, 李三伟, 赵雪薇, 王红斌, 丁耀南, 刘忠礼, 唐道源, 郑志坚, 江文勉. 1.054μm激光产生的高纯度黑腔辐射场. 物理学报, 1995, 44(3): 350-356. doi: 10.7498/aps.44.350
    [20] 吴中祥. 激光器谐振腔中辐射能量密度须按场强叠加计算. 物理学报, 1980, 29(3): 392-394. doi: 10.7498/aps.29.392
计量
  • 文章访问数:  6663
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-04
  • 修回日期:  2019-09-17
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-05

/

返回文章
返回