搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

经典场驱动对量子系统生存概率的影响

胡要花 吴琴

引用本文:
Citation:

经典场驱动对量子系统生存概率的影响

胡要花, 吴琴

Influence of classical field driving on survival probability in quantum Zeno and anti-Zeno effect

Hu Yao-Hua, Wu Qin
PDF
HTML
导出引用
  • 考虑一个受经典场驱动的二能级系统与零温玻色子库相互作用, 研究经典场驱动对量子Zeno效应和量子反Zeno效应中量子系统存活概率的影响. 结果表明, 经典场驱动可以降低量子系统的有效衰减率, 即提高量子系统的存活概率. 此外, 环境的欧姆性对于提高量子系统的存活概率也起着重要作用, 设置适当的环境欧姆参数可降低量子系统的有效衰减率. 再者, 随着二能级系统与经典场之间失谐量的增加, 量子系统的存活概率降低, 而通过增加经典场驱动的强度或选择合适的环境欧姆参数, 可以抑制失谐带来的负面影响.
    The quantum system decay can be frozen and slowed down when it is repeatedly and frequently measured, which is described as the quantum Zeno effect (QZE). On the other hand, the evolution of the quantum system can be sped up if the measurement is not frequent enough, which is called quantum anti-Zeno effect (QAZE). Both the QZE and QAZE have been experimentally observed in many different physical setups, and have attracted tremendous theoretical and experimental interest due to their significant potential applications in quantum information processing.A recent research has demonstrated that the effective lifetime of the quantum system when being measured repeatedly depends on the spectral density of the environment, the system parameters, and the system-environment coupling. Then, how to prolong the survival time of the quantum system subjected to being repeatedly measured is an issue that deserves to be studied. In the present paper, considered is a classical-field-driven two-level system interacting with a bosonic reservoir at zero temperature. We investigate the dynamics of the effective decay rate versus the measurement interval, and propose a scheme to prolong the lifetime of the quantum system subjected to being measured repeatedly, with a classical field driven. The results show that when the initial state of the quantum system is excited, QZE-to-QAZE transitions occurs several times. In an identical time interval, the decay rate for the initial superposition state is far smaller than that for the initial excited state. More importantly, the effective decay rate is very small when the classical driving is strong enough, which indicates that the classical driving can improve the survival probability of the two-level system subjected to being measured frequently and repeatedly. In addition, the environmental ohmicity plays an important role in keeping the quantum state alive. The detuning between the two-level system and the classical field has an adverse effect on the decay rate. In other words, the survival probability decreases as the detuning increases. Fortunately, this negative influence from the detuning can be suppressed by increasing the strength of classical driving or choosing the appropriate ohmicity parameter of the environment.
      通信作者: 胡要花, huyaohua1@sina.com
    • 基金项目: 国家自然科学基金(批准号: 11804141)、河南省高校青年骨干教师资助计划(批准号: 2018GGJS129)、河南省高校重点科研项目(批准号: 16A140013)、广东省自然科学基金博士基金(批准号: 2018A030310109)和广东医科大学博士基金(批准号: B2017019)资助的课题
      Corresponding author: Hu Yao-Hua, huyaohua1@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11804141), the Training Plan of Young Key Teachers in Colleges and Universities of Henan Province, China (Grant No. 2018GGJS129), the Key Science and Technology Project of University of Henan Province, China (Grant No. 16A140013), the Doctoral Program of Guangdong Natural Science Foundation, China (Grant No. 2018A030310109), and the Doctoral Project of Guangdong Medical University, China (Grant No. B2017019)
    [1]

    Maniscalco S, Francica F, Zaffino R L, Gullo N L, Plastina F 2008 Phys. Rev. Lett. 100 090503Google Scholar

    [2]

    Bernu J, Deléglise S, Sayrin C, Kuhr S, Dotsenko I, Brune M, Raimond J M, Haroche S 2008 Phys. Rev. Lett. 101 180402Google Scholar

    [3]

    Facchi P, Lidar D A, Pascazio S 2004 Phys. Rev. A 69 032314Google Scholar

    [4]

    Schlosshauer M 2018 Phys. Rev. A 97 042104Google Scholar

    [5]

    Christensen C N, Iles-Smith J, Petersen T S, Mǿrk J, McCutcheon D P S 2018 Phys. Rev. A 97 063807Google Scholar

    [6]

    Cao Y, Li Y H, Cao Z, Yin J, Chen Y A, Yin H L, Chen T Y, Ma X, Peng C Z, Pan J W 2017 PNAS 114 4920Google Scholar

    [7]

    Kiilerich A H, Mǿlmer K 2015 Phys. Rev. A 92 032124Google Scholar

    [8]

    Fischer M C, Gutiérrez-Medina B, Raizen M G 2001 Phys. Rev. Lett. 87 040402Google Scholar

    [9]

    Kakuyanagi K, Baba T, Matsuzaki Y, Nakano H, Saito S, Semba K 2015 New J. Phys. 17 063035Google Scholar

    [10]

    Chen P W, Tsai D B, Bennett P 2010 Phys. Rev. B 81 115307Google Scholar

    [11]

    石永强, 孔维龙, 吴仁存, 张文轩, 谭磊 2017 物理学报 66 054204Google Scholar

    Shi Y Q, Kong W L, Wu R C, Zhang W X, Tan L 2017 Acta Phys. Sin. 66 054204Google Scholar

    [12]

    Zhang M C, Wu W, He L Z, Xie Y, Wu C W, Li Q, Chen P X 2018 Chin. Phys. B 27 090305Google Scholar

    [13]

    Hacohen-Gourgy S, Garcia-Pintos L P, Martin L S, Dressel J, Siddiqi I 2018 Phys. Rev. Lett. 120 020505Google Scholar

    [14]

    He S, Wang C, Ren X Z, Duan L W, Chen Q H 2019 https://arxiv.org/abs/1904.03872

    [15]

    Nourmandipour A, Tavassoly M K, Bolorizadeh M A 2016 J. Opt. Soc. Am. B 33 1723

    [16]

    Francica F, Maniscalco S, Plastina F 2010 Phys. Scr. T 140 014044

    [17]

    Chaudhry A Z, Gong J 2014 Phys. Rev. A 90 012101Google Scholar

    [18]

    Aftab M J, Chaudhry A Z 2017 Sci. Rep. 7 11766Google Scholar

    [19]

    Majeed M, Chaudhry A Z 2018 Sci. Rep. 8 14887Google Scholar

    [20]

    Ozawa A, Davila-Rodriguez J, Hänsch T W, Udem T 2018 Sci Rep. 8 10643Google Scholar

    [21]

    Harrington P M, Monroe J T, Murch K W 2017 Phys. Rev. Lett. 118 240401Google Scholar

    [22]

    Zhou Z, Lü Z, Zheng H, Goan H S 2017 Phys. Rev. A 96 032101Google Scholar

    [23]

    Wu W, Lin H Q 2017 Phys. Rev. A 95 042132Google Scholar

    [24]

    Zhang J M, Jing J, Wang L G, Zhu S Y 2018 Phys. Rev. A 98 012135Google Scholar

    [25]

    Chaudhry A Z 2016 Sci. Rep. 6 29497Google Scholar

    [26]

    Chaudhry A Z 2017 Sci. Rep. 7 1741Google Scholar

    [27]

    Zhang J S, Xu J B, Lin Q 2009 Eur. Phys. J. D 51 283Google Scholar

    [28]

    Gao D Y, Gao Q, Xia Y J 2018 Chin. Phys. B 27 060304Google Scholar

    [29]

    Gao D Y, Gao Q, Xia Y J 2017 Chin. Phys. B 26 110303Google Scholar

    [30]

    Zhang Y J, Han W, Xia Y J, Cao J P, Fan H 2015 Phys. Rev. A 91 032112Google Scholar

    [31]

    Li Y L, Xiao X, Yao Y 2015 Phys. Rev. A 91 052105Google Scholar

    [32]

    Pinkse P W H, Fischer T, Maunz P, Rempe G 2000 Nature 404 365Google Scholar

    [33]

    Varcoe B T H, Brattke S, Weidinger M, Walther H 2000 Nature 403 743Google Scholar

    [34]

    Zhang M C, Wu C W, Xie Y, Wu W, Chen P X 2019 Quant. Inf. Process. 18 97Google Scholar

    [35]

    Hur K L 2012 Phys. Rev. B 85 140506(R)Google Scholar

    [36]

    Nagy D, Kónya G, Szirmai G, Domokos P 2010 Phys. Rev. Lett. 104 130401Google Scholar

  • 图 1  有效衰减率随测量间隔的变化曲线 (a) $s = 0.5$; (b) $s = 1$; (c) $s = 2$

    Fig. 1.  The behavior of the effective decay rate as a function of the measurement interval: (a) $s = 0.5$; (b) $s = 1$; (c) $s = 2$.

    图 2  有效衰减率随测量间隔的变化曲线 (a) $\varOmega = 30$, $s = 0.5$; (b) $\varOmega = 30$, $s = 2$; (c) $\varOmega = 50$, $s = 2$

    Fig. 2.  The beehavior of the effective decay rate as a function of the measurement interval: (a) $\varOmega = 30$, $s = 0.5$; (b) $\varOmega = 30$, $s = 2$; (c) $\varOmega = 50$, $s = 2$.

    图 3  初态$|\psi \rangle = {\rm{|}}1\rangle $时有效衰减率随测量间隔的变化曲线

    Fig. 3.  Behavior of the effective decay rate as a function of the measurement interval for the initial state $|\psi \rangle = {\rm{|}}1\rangle $.

  • [1]

    Maniscalco S, Francica F, Zaffino R L, Gullo N L, Plastina F 2008 Phys. Rev. Lett. 100 090503Google Scholar

    [2]

    Bernu J, Deléglise S, Sayrin C, Kuhr S, Dotsenko I, Brune M, Raimond J M, Haroche S 2008 Phys. Rev. Lett. 101 180402Google Scholar

    [3]

    Facchi P, Lidar D A, Pascazio S 2004 Phys. Rev. A 69 032314Google Scholar

    [4]

    Schlosshauer M 2018 Phys. Rev. A 97 042104Google Scholar

    [5]

    Christensen C N, Iles-Smith J, Petersen T S, Mǿrk J, McCutcheon D P S 2018 Phys. Rev. A 97 063807Google Scholar

    [6]

    Cao Y, Li Y H, Cao Z, Yin J, Chen Y A, Yin H L, Chen T Y, Ma X, Peng C Z, Pan J W 2017 PNAS 114 4920Google Scholar

    [7]

    Kiilerich A H, Mǿlmer K 2015 Phys. Rev. A 92 032124Google Scholar

    [8]

    Fischer M C, Gutiérrez-Medina B, Raizen M G 2001 Phys. Rev. Lett. 87 040402Google Scholar

    [9]

    Kakuyanagi K, Baba T, Matsuzaki Y, Nakano H, Saito S, Semba K 2015 New J. Phys. 17 063035Google Scholar

    [10]

    Chen P W, Tsai D B, Bennett P 2010 Phys. Rev. B 81 115307Google Scholar

    [11]

    石永强, 孔维龙, 吴仁存, 张文轩, 谭磊 2017 物理学报 66 054204Google Scholar

    Shi Y Q, Kong W L, Wu R C, Zhang W X, Tan L 2017 Acta Phys. Sin. 66 054204Google Scholar

    [12]

    Zhang M C, Wu W, He L Z, Xie Y, Wu C W, Li Q, Chen P X 2018 Chin. Phys. B 27 090305Google Scholar

    [13]

    Hacohen-Gourgy S, Garcia-Pintos L P, Martin L S, Dressel J, Siddiqi I 2018 Phys. Rev. Lett. 120 020505Google Scholar

    [14]

    He S, Wang C, Ren X Z, Duan L W, Chen Q H 2019 https://arxiv.org/abs/1904.03872

    [15]

    Nourmandipour A, Tavassoly M K, Bolorizadeh M A 2016 J. Opt. Soc. Am. B 33 1723

    [16]

    Francica F, Maniscalco S, Plastina F 2010 Phys. Scr. T 140 014044

    [17]

    Chaudhry A Z, Gong J 2014 Phys. Rev. A 90 012101Google Scholar

    [18]

    Aftab M J, Chaudhry A Z 2017 Sci. Rep. 7 11766Google Scholar

    [19]

    Majeed M, Chaudhry A Z 2018 Sci. Rep. 8 14887Google Scholar

    [20]

    Ozawa A, Davila-Rodriguez J, Hänsch T W, Udem T 2018 Sci Rep. 8 10643Google Scholar

    [21]

    Harrington P M, Monroe J T, Murch K W 2017 Phys. Rev. Lett. 118 240401Google Scholar

    [22]

    Zhou Z, Lü Z, Zheng H, Goan H S 2017 Phys. Rev. A 96 032101Google Scholar

    [23]

    Wu W, Lin H Q 2017 Phys. Rev. A 95 042132Google Scholar

    [24]

    Zhang J M, Jing J, Wang L G, Zhu S Y 2018 Phys. Rev. A 98 012135Google Scholar

    [25]

    Chaudhry A Z 2016 Sci. Rep. 6 29497Google Scholar

    [26]

    Chaudhry A Z 2017 Sci. Rep. 7 1741Google Scholar

    [27]

    Zhang J S, Xu J B, Lin Q 2009 Eur. Phys. J. D 51 283Google Scholar

    [28]

    Gao D Y, Gao Q, Xia Y J 2018 Chin. Phys. B 27 060304Google Scholar

    [29]

    Gao D Y, Gao Q, Xia Y J 2017 Chin. Phys. B 26 110303Google Scholar

    [30]

    Zhang Y J, Han W, Xia Y J, Cao J P, Fan H 2015 Phys. Rev. A 91 032112Google Scholar

    [31]

    Li Y L, Xiao X, Yao Y 2015 Phys. Rev. A 91 052105Google Scholar

    [32]

    Pinkse P W H, Fischer T, Maunz P, Rempe G 2000 Nature 404 365Google Scholar

    [33]

    Varcoe B T H, Brattke S, Weidinger M, Walther H 2000 Nature 403 743Google Scholar

    [34]

    Zhang M C, Wu C W, Xie Y, Wu W, Chen P X 2019 Quant. Inf. Process. 18 97Google Scholar

    [35]

    Hur K L 2012 Phys. Rev. B 85 140506(R)Google Scholar

    [36]

    Nagy D, Kónya G, Szirmai G, Domokos P 2010 Phys. Rev. Lett. 104 130401Google Scholar

计量
  • 文章访问数:  5638
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-14
  • 修回日期:  2019-09-17
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-05

/

返回文章
返回