搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

V-4Cr-4Ti/Ti复合材料界面的辐照损伤特性研究

李然然 张一帆 耿殿程 张高伟 渡边英雄 韩文妥 万发荣

引用本文:
Citation:

V-4Cr-4Ti/Ti复合材料界面的辐照损伤特性研究

李然然, 张一帆, 耿殿程, 张高伟, 渡边英雄, 韩文妥, 万发荣

Characterization of interface irradiation damage in Ti-clad V-4Cr-4Ti composite material

Li Ran-Ran, Zhang Yi-Fan, Geng Dian-Cheng, Zhang Gao-Wei, Watanabe Hideo, Han Wen-Tuo, Wan Fa-Rong
PDF
HTML
导出引用
  • 采用透射电子显微镜和纳米压痕技术研究了高能Fe10+离子注入后V-4Cr-4Ti/Ti复合材料界面辐照硬化、辐照缺陷以及微观结构的变化. 根据样品成分和微观结构的特征, 将该复合材料分成V-4Cr-4Ti基体、界面I、界面II和Ti基体四个区域. 纳米压痕结果表明, 辐照后样品均发生了辐照硬化, 但界面处的辐照硬化远低于两基体, 说明异质材料界面表现出了良好的抗辐照硬化能力. 透射电子显微镜结果表明, 辐照后界面处的辐照缺陷密度较小、尺寸较大、分布较均匀; 而在两基体中辐照缺陷密度大、尺寸小且大量缠结. 辐照后V-4Cr-4Ti基体、界面I区和界面II区均有一些富Ti析出物, 但界面I的析出物数量和尺寸均高于界面II和V-4Cr-4Ti基体. 由于Ti的析出改变了样品中局部的V/Ti比, 导致界面I部分区域由β-Ti转变为α-Ti, 形成α + β Ti共存区.
    The development of electrically insulating coatings is extremely important for the lithium/vanadium (Li/V) blanket of the fusion reactor. However, Li/V cladding materials suffer many problems such as tritiumpermeation and material corrosion. Thus, it is very important to find suitable insulating, tritium-resistant and corrosion-resistant coatings. So, the " V-alloy/Ti/AlN” bilayer coating was proposed by our group in previous study for the first time. In this paper, the evolution of the hardness, irradiation defects and microstructure of the Ti-clad V-4Cr-4Ti composite material after Fe10+ implantation are studied by transmission electron microscopy (TEM) and nanoindentation. According to the characteristics of the composition and microstructure, V-4Cr-4Ti/Ti composite material can be divided into four zones: V-4Cr-4Ti matrix, interface I (the interface near V-4Cr-4Ti matrix), interface II (the interface near Ti matrix), and Ti matrix. The nanoindentation results show that radiation hardening occurs in all regions during irradiation. The radiation hardening in the interface is lower than in the V-4Cr-4Ti and Ti matrix. Thus, the interface of heterogeneous material exhibits fine resistance to radiation hardening. The experimental values of hardness are much higher than the values calculated by the dispersed barrier hardening model. One reason for the discrepancy is that the theoretical values are calculated under the hypothesis of the uniform loop distribution. Actually, a large number of dislocation loops accumulate and tangle with each other in the samples. In addition, the formation of the precipitates is also one of the key factors. The TEM results show that the irradiation defects in the interface are low in density, large in size, and uniform in distribution. As a contrast, high density, small size and twisted dislocation loops are observed in irradiated V-4Cr-4Ti and Ti matrix. These results indicate that the interface can play a critical role in the resistance to irradiation damage. Few tiny Ti-rich precipitates appear in the V-4Cr-4Ti matrix, while there are large quantities of Ti precipitates in the interface after irradiation. Moreover, the number and size of precipitates in the interface I are larger than those in the interface II due to the formation of a few V-rich precipitates in the interface I. The formation of precipitations changes the proportion of V/Ti, which leads to the transformation from β-Ti to α-Ti in the interface.
      通信作者: 万发荣, wanfr@mater.ustb.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51071021, 51471026)和国家磁约束核聚变发展专项(批准号: 2014GB120000)资助的课题.
      Corresponding author: Wan Fa-Rong, wanfr@mater.ustb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51071021, 51471026) and the National Magnetic Confinement Fusion Program of China (Grant No. 2014GB120000).
    [1]

    张高伟, 韩文妥, 崔丽娟, 万发荣 2018 稀有金属材料与工程 5 1537

    Zhang G W, Han W T, Cui L J, Wan F R 2018 Rare Metal Mat. Eng. 5 1537

    [2]

    Zhang G W, Han W T, Yi X O, Wan F R 2018 Appl. Sci. 8 577Google Scholar

    [3]

    Gohar Y, Majumdar S, Smith D L 2000 Fusion Eng. Des. 49 551

    [4]

    Smith D L, Billone M C, Natesan K 2000 Int. J. Refract. Met. H 18 213Google Scholar

    [5]

    Jones R H, Heinisch H L, McCarthy K A 1999 J. Nucl. Mater. 271 518

    [6]

    Kirillov I R, Danilov I V, Sidorenkov S I, Strebkov Y S, Mattas R F, Gohar Y, Hua T Q, Smith D L 1998 Fusion Eng. Des. 39 669

    [7]

    Mattas R F, Smith D L, Reed C D, Parka J H, Kirillov I R, Strebkov Y S, Rusanov A E, Votinov S N 1998 Fusion Eng. Des. 39 659

    [8]

    Muroga T 2005 Mater. Trans. 46 405Google Scholar

    [9]

    Malang S, Bühler L 1994 MHD Pressure Drop in Ducts with Imperfectly Insulating Coatings (Chicago: Argonne National Laboratory Report) Report No. ANL/FPP/TM-269

    [10]

    Vertkov A V, Evtikhin V A, Lyublinski I E 2001 Fusion Eng. Des. 58 731

    [11]

    Smith D L, Konys J, Muroga T, Evitkhin V 2002 J. Nucl. Mater. 307 1314

    [12]

    Muroga T, Pint B A 2010 Fusion Eng. Des. 85 1301Google Scholar

    [13]

    Wang J, Li Q, Xiang Q Y, Cao J L 2016 Fusion Eng. Des. 102 94Google Scholar

    [14]

    Suzuki A, Muroga T, Pint B A, Yoneoka T, Tanaka S 2003 Fusion Eng. Des. 69 397Google Scholar

    [15]

    Pint B A, DeVan J H, DiStefano J R 2002 J. Nucl. Mater. 307 1344

    [16]

    Pint B A, Tortorelli P F, JankowskiA, Hayes J, Muroga T, Suzuki A, Yeliseyeva O I, Chernov V M 2004 J. Nucl. Mater. 329 119

    [17]

    Jiří M, Pavel C 2010 Adv. Sci. Technol. 66 19

    [18]

    Vitkovsky I V, Gorunov A V, Kirillov I R, Khoroshikh V M, Kraev V D, Ogorodnikov A P, Petrovsky V Y, Rusanov A E 2002 Fusion Eng. Des. 61 739

    [19]

    Demkowicz M J, Hoagland R G, Hirth J P 2008 Phys. Rev. Lett. 100 136102Google Scholar

    [20]

    Kolluri K, Demkowicz M J 2012 Phys. Rev. B 85 205416Google Scholar

    [21]

    Stoller R E, Toloczko M B, Was G S, Certain A G, Dwaraknath S, Garner F A 2013 Nucl. Instrum. Meth. B 310 75Google Scholar

    [22]

    ASTM Committee E521–96 2003 Standard Practice for Neutron Radiation Damage Simulation by Charged-Particle Irradiation (vol.12.02) (West Conshohocken: Copyright © ASTM International) p8

    [23]

    万发荣 1993 金属材料的辐照损伤 (北京: 科学出版社) 第143页

    Wan F R 1993 Irradiation Damage of Metal Materials (Vol. 1) (Beijing: Science Press) p143 (in Chinese)

    [24]

    Fu E G, Carter J, Swadener G, Misra A, Shao L, Wang H, Zhang X 2009 J. Nucl. Mater. 385 629Google Scholar

    [25]

    Watanabe H, Nagamine M, Yamasaki K, Yoshida N, Heo N J, Nagasaka T, Muroga T 2005 Mater. Sci. Forum 475 1491

    [26]

    Heo N J, Nagasaka T, Muroga T, Nishimura A, Shinozaki K, Watanabe H 2003 Fusion Sci. Technol. 44 470Google Scholar

    [27]

    Han W Z, Demkowicz M J, Fu E G, Wang Y Q, Misra A 2012 Acta Mater. 60 6341Google Scholar

    [28]

    Zhang Y F, Zhan Q, Ohnuki S, Kimura A, Wan F R, Yoshida K, Nagai Y 2019 J. Nucl. Mater. 517 1Google Scholar

    [29]

    Bergner F, Pareige C, Hernández-Mayoral M, Malerba L, Heintze C 2014 J. Nucl. Mater. 448 96Google Scholar

    [30]

    张高伟 2018 博士学位论文 (北京: 北京科技大学)

    Zhang G W 2018 Ph. D. Dissertation (Beijing: University of Science and Technology Beijing) (in Chinese)

  • 图 1  由SRIM软件计算得到的V-4Cr-4Ti和Ti的辐照损伤随样品深度的变化

    Fig. 1.  Irradiation damage (dpa) in V-4Cr-4Ti/Ti samples calculated by SRIM2008 software.

    图 2  V-4Cr-4Ti/Ti界面区域及两侧基体在(a) 辐照前和 (b) 辐照后的SEM形貌图及对应的EDS元素线扫描分析结果; 图中的白色长方形区域为FIB的取样位置

    Fig. 2.  The SEM morphology and EDS line analysis of V-4Cr-4Ti/Ti samples: (a) Before and (b) after irradiation; the positions of FIB samples are marked with white rectangles.

    图 3  V-4Cr-4Ti/Ti界面及两侧基体区域的硬度分布

    Fig. 3.  Vickers hardness distribution across the interface of the V-4Cr-4Ti/Ti.

    图 4  V-4Cr-4Ti/Ti界面区域及两侧基体辐照后的TEM形貌图 (a) 钒基体; (b) 界面I; (c) 界面II; (d) 钛基体

    Fig. 4.  The TEM images of V-4Cr-4Ti/Ti after irradiation: (a) V-4Cr-4Ti; (b) interface I; (c) interface II; (d) Ti.

    图 5  辐照后V-4Cr-4Ti/Ti界面及两侧基体的位错密度(a) 和尺寸 (b)

    Fig. 5.  Dislocation density (a) and diameter (b) distribution across the interface.

    图 6  辐照后界面处的STEM形貌图 (a) 钒基体; (b) 界面I; (c) 界面II

    Fig. 6.  STEM images of V-4Cr-4Ti/Ti interface after irradiation: (a) V-4Cr-4Ti; (b) interface I; (c) interface II.

    图 7  辐照前后析出物EDS分析结果 (a) 辐照前界面; (b) 辐照后钒基体; (c) 辐照后界面I; (d) 辐照后界面II

    Fig. 7.  EDS analysis of the V-4Cr-4Ti/Ti: (a) Interface before irradiation; (b) V-4Cr-4Ti after irradiation; (c) interface I after irradiation; (d) interface II after irradiation.

    图 8  辐照后钒基体和界面I处析出物EDS面扫描分析结果 (a)—(d) 钒基体; (e)—(h) 界面I

    Fig. 8.  EDS-mapping analysis of the V-4Cr-4Ti and interface I after irradiation: (a)−(d) V-4Cr-4Ti; (e)−(h) interface I.

    图 9  辐照后样品不同区域的选区电子衍射分析结果 (a) 钒基体; (b) 钛基体; (c), (d) 界面I; (e), (f) 界面II

    Fig. 9.  Diffraction analysis of irradiated samples: (a) V-4Cr-4Ti; (b) Ti; (c), (d) interface I; (e) (f) interface II.

    表 1  通过纳米压痕所得硬化实验值与采用DBH模型对辐照硬化进行的估算值

    Table 1.  Experimental hardness values by nanoindentation and the estimated hardness values calculated by the DBH model

    钒基体界面I界面II钛基体
    ΔHV实验值20713655247
    N/m–31.5 × 10228.0 × 10218.4 × 10211.3 × 1022
    d/nm7.3 ± 1.519.9 ± 5.020.3 ± 4.811.2 ± 2.0
    N·d1.09 × 10141.59 × 10141.70 × 10141.46 × 1014
    $ \sqrt {N\cdot d} $1.05 × 1071.26 × 1071.31 × 1071.21 × 107
    ΔHV计算值39.527.738.6*44.8
    注: *表示界面II处α + β Ti区的硬化按α-Ti和β-Ti各占50%进行计算.
    下载: 导出CSV
  • [1]

    张高伟, 韩文妥, 崔丽娟, 万发荣 2018 稀有金属材料与工程 5 1537

    Zhang G W, Han W T, Cui L J, Wan F R 2018 Rare Metal Mat. Eng. 5 1537

    [2]

    Zhang G W, Han W T, Yi X O, Wan F R 2018 Appl. Sci. 8 577Google Scholar

    [3]

    Gohar Y, Majumdar S, Smith D L 2000 Fusion Eng. Des. 49 551

    [4]

    Smith D L, Billone M C, Natesan K 2000 Int. J. Refract. Met. H 18 213Google Scholar

    [5]

    Jones R H, Heinisch H L, McCarthy K A 1999 J. Nucl. Mater. 271 518

    [6]

    Kirillov I R, Danilov I V, Sidorenkov S I, Strebkov Y S, Mattas R F, Gohar Y, Hua T Q, Smith D L 1998 Fusion Eng. Des. 39 669

    [7]

    Mattas R F, Smith D L, Reed C D, Parka J H, Kirillov I R, Strebkov Y S, Rusanov A E, Votinov S N 1998 Fusion Eng. Des. 39 659

    [8]

    Muroga T 2005 Mater. Trans. 46 405Google Scholar

    [9]

    Malang S, Bühler L 1994 MHD Pressure Drop in Ducts with Imperfectly Insulating Coatings (Chicago: Argonne National Laboratory Report) Report No. ANL/FPP/TM-269

    [10]

    Vertkov A V, Evtikhin V A, Lyublinski I E 2001 Fusion Eng. Des. 58 731

    [11]

    Smith D L, Konys J, Muroga T, Evitkhin V 2002 J. Nucl. Mater. 307 1314

    [12]

    Muroga T, Pint B A 2010 Fusion Eng. Des. 85 1301Google Scholar

    [13]

    Wang J, Li Q, Xiang Q Y, Cao J L 2016 Fusion Eng. Des. 102 94Google Scholar

    [14]

    Suzuki A, Muroga T, Pint B A, Yoneoka T, Tanaka S 2003 Fusion Eng. Des. 69 397Google Scholar

    [15]

    Pint B A, DeVan J H, DiStefano J R 2002 J. Nucl. Mater. 307 1344

    [16]

    Pint B A, Tortorelli P F, JankowskiA, Hayes J, Muroga T, Suzuki A, Yeliseyeva O I, Chernov V M 2004 J. Nucl. Mater. 329 119

    [17]

    Jiří M, Pavel C 2010 Adv. Sci. Technol. 66 19

    [18]

    Vitkovsky I V, Gorunov A V, Kirillov I R, Khoroshikh V M, Kraev V D, Ogorodnikov A P, Petrovsky V Y, Rusanov A E 2002 Fusion Eng. Des. 61 739

    [19]

    Demkowicz M J, Hoagland R G, Hirth J P 2008 Phys. Rev. Lett. 100 136102Google Scholar

    [20]

    Kolluri K, Demkowicz M J 2012 Phys. Rev. B 85 205416Google Scholar

    [21]

    Stoller R E, Toloczko M B, Was G S, Certain A G, Dwaraknath S, Garner F A 2013 Nucl. Instrum. Meth. B 310 75Google Scholar

    [22]

    ASTM Committee E521–96 2003 Standard Practice for Neutron Radiation Damage Simulation by Charged-Particle Irradiation (vol.12.02) (West Conshohocken: Copyright © ASTM International) p8

    [23]

    万发荣 1993 金属材料的辐照损伤 (北京: 科学出版社) 第143页

    Wan F R 1993 Irradiation Damage of Metal Materials (Vol. 1) (Beijing: Science Press) p143 (in Chinese)

    [24]

    Fu E G, Carter J, Swadener G, Misra A, Shao L, Wang H, Zhang X 2009 J. Nucl. Mater. 385 629Google Scholar

    [25]

    Watanabe H, Nagamine M, Yamasaki K, Yoshida N, Heo N J, Nagasaka T, Muroga T 2005 Mater. Sci. Forum 475 1491

    [26]

    Heo N J, Nagasaka T, Muroga T, Nishimura A, Shinozaki K, Watanabe H 2003 Fusion Sci. Technol. 44 470Google Scholar

    [27]

    Han W Z, Demkowicz M J, Fu E G, Wang Y Q, Misra A 2012 Acta Mater. 60 6341Google Scholar

    [28]

    Zhang Y F, Zhan Q, Ohnuki S, Kimura A, Wan F R, Yoshida K, Nagai Y 2019 J. Nucl. Mater. 517 1Google Scholar

    [29]

    Bergner F, Pareige C, Hernández-Mayoral M, Malerba L, Heintze C 2014 J. Nucl. Mater. 448 96Google Scholar

    [30]

    张高伟 2018 博士学位论文 (北京: 北京科技大学)

    Zhang G W 2018 Ph. D. Dissertation (Beijing: University of Science and Technology Beijing) (in Chinese)

  • [1] 赵永鹏, 豆艳坤, 贺新福, 杨文. Ti-V-Ta多主元合金辐照位错环形成的级联重叠模拟. 物理学报, 2024, 73(22): 226102. doi: 10.7498/aps.73.20241074
    [2] 冉峰, 梁艳, 张坚地. 氧化物异质界面上的准二维超导. 物理学报, 2023, 72(9): 097401. doi: 10.7498/aps.72.20230044
    [3] 马丽娟, 韩婷, 高升启, 贾建峰, 武海顺. 单缺陷对Sc, Ti, V修饰石墨烯的结构及储氢性能的影响. 物理学报, 2021, 70(21): 218802. doi: 10.7498/aps.70.20210727
    [4] 李俊炜, 王祖军, 石成英, 薛院院, 宁浩, 徐瑞, 焦仟丽, 贾同轩. GaInP/GaAs/Ge三结太阳电池不同能量质子辐照损伤模拟. 物理学报, 2020, 69(9): 098802. doi: 10.7498/aps.69.20191878
    [5] 刘思冕, 韩卫忠. 金属材料界面与辐照缺陷的交互作用机理. 物理学报, 2019, 68(13): 137901. doi: 10.7498/aps.68.20190128
    [6] 范巍, 曾雉. 四元硫化物Cu2Zn(Ti, Zr, Hf)S4:一类新颖光伏材料. 物理学报, 2016, 65(6): 068801. doi: 10.7498/aps.65.068801
    [7] 孙鹏, 杜磊, 陈文豪, 何亮. 基于辐照前1/f噪声的金属-氧化物-半导体场效应晶体管潜在缺陷退化模型. 物理学报, 2012, 61(6): 067801. doi: 10.7498/aps.61.067801
    [8] 程萍, 张玉明, 张义门, 王悦湖, 郭辉. 非故意掺杂4H-SiC外延材料本征缺陷的热稳定性. 物理学报, 2010, 59(5): 3542-3546. doi: 10.7498/aps.59.3542
    [9] 罗晓婧, 杨昌平, 宋学平, 徐玲芳. 巨介电常数氧化物CaCu3Ti4O12的介电和阻抗特性. 物理学报, 2010, 59(5): 3516-3522. doi: 10.7498/aps.59.3516
    [10] 王刚, 徐东生, 杨锐. Ti-6Al-4V合金中片层组织形成的相场模拟. 物理学报, 2009, 58(13): 343-S348. doi: 10.7498/aps.58.343
    [11] 单丹, 朱珺钏, 金灿, 陈小兵. B位等价掺杂SrBi4Ti4O15铁电材料的性能研究. 物理学报, 2009, 58(10): 7235-7240. doi: 10.7498/aps.58.7235
    [12] 杜晓明, 吴尔冬, 董宝中, 吴忠华, 苑学众. Ti-Mo合金氢化物微观缺陷的小角X射线散射研究. 物理学报, 2008, 57(9): 5782-5787. doi: 10.7498/aps.57.5782
    [13] 王 博, 赵有文, 董志远, 邓爱红, 苗杉杉, 杨 俊. 高温退火后非掺杂磷化铟材料的电子辐照缺陷. 物理学报, 2007, 56(3): 1603-1607. doi: 10.7498/aps.56.1603
    [14] 罗鸿志, 贾 琳, 李养贤, 孟凡斌, 申 江, 陈难先, 吴光恒, 杨伏明. Er3(Fe, Co, M)29化合物(M=Cr, V, Ti, Mn, Ga, Nb)的结构与磁性. 物理学报, 2005, 54(11): 5246-5250. doi: 10.7498/aps.54.5246
    [15] 杨 帅, 李养贤, 马巧云, 徐学文, 牛萍娟, 李永章, 牛胜利, 李洪涛. FTIR研究快中子辐照直拉硅中的VO2. 物理学报, 2005, 54(5): 2256-2260. doi: 10.7498/aps.54.2256
    [16] 朱 骏, 毛翔宇, 陈小兵. Bi4-xLaxTi3O12-SrBi4Ti4O15,共生结构铁电材料拉曼光谱研究. 物理学报, 2004, 53(11): 3929-3933. doi: 10.7498/aps.53.3929
    [17] 郭鸿涌, 刘宝丹, 唐宁, 罗鸿志, 李养贤, 杨伏明, 吴光恒. Co和稳定元素对Nd3(Fe,Co,M)29(M=Ti,V,Cr) 化合物结构和磁性的影响. 物理学报, 2004, 53(1): 189-193. doi: 10.7498/aps.53.189
    [18] 朱 骏, 卢网平, 刘秋朝, 毛翔宇, 惠 荣, 陈小兵. (Bi, La)4Ti3O12-Sr(Bi, La)4Ti4O15共生结构铁电材料性能研究. 物理学报, 2003, 52(10): 2627-2631. doi: 10.7498/aps.52.2627
    [19] 朱 骏, 卢网平, 刘秋朝, 毛翔宇, 惠 荣, 陈小兵. La掺杂SrBi4Ti4O15铁电材料性能研究. 物理学报, 2003, 52(6): 1524-1528. doi: 10.7498/aps.52.1524
    [20] 彭承, 孙恒慧. 电子辐照InP的体内和界面缺陷研究. 物理学报, 1987, 36(11): 1408-1415. doi: 10.7498/aps.36.1408
计量
  • 文章访问数:  7806
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-06
  • 修回日期:  2019-08-28
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-05

/

返回文章
返回