-
粉末发动机是以粉末颗粒为燃料的新型发动机, 具有多次起动和推力调节的功能. 粉末加注是粉末发动机实验组织过程中的重要环节. 本研究通过搭建粉末供应系统开展粉末气力加注实验, 研究对比了集粉箱加注位置、流化气量对粉末气力加注特性的影响. 考虑了供粉过程中储箱内粉末堆积密度的动态变化, 并建立了相应的计算方法, 同时还采用控制系统理论揭示了储箱内粉末堆积密度的变化规律. 结果表明: 在相同条件下, 较大的流化气量有利于加注过程稳定, 但集粉箱加注率较低; 气力加注方式下集粉箱内的粉末堆积密度大于储箱内初始堆积密度; 采用较小的流化气量与集粉箱壁面切向加注方式有利于提高粉末粒径分布均匀性; 集粉箱壁面切向加注方式下, 流化气量较小时储箱内粉末的堆积密度是先增大后减小, 且堆积密度最终值小于初始值, 而流化气量较大时, 储箱内粉末的堆积密度是先增大后减小再增大后减小, 且堆积密度最终值大于初始值; 储箱内粉末堆积密度的动态变化过程类似于欠阻尼二阶系统, 流化气量较小时系统阻尼系数较小, 而流化气量较大时系统阻尼系数较大, 且是一个变阻尼过程.Powder engine is one kind of new concept engines with multiple ignition capability and thrust modulation function. Powder filling is an important process of the powder engine tests. The powder pneumatic filling experiments were carried out to investigate the effects of the filling position of the powder collection box and the mass flow rate of fluidization gas on the stability and performance of powder pneumatic filling. It’s found that large mass flow rate of fluidization gas contributes to stability of powder pneumatic filling, but its volume efficiency of powder filling is the lowest, only 68.1%, but it’s 93.9% when the mass flow rate of fluidization gas is small. Compared with the vertical inlet of end cap, tangential inlet on the cylinder wall makes the powder uniformity better. In the pneumatic filling mode, the powder bulk density in the collection box is greater than the bulk density in the powder tank. In addition, the mass of powder calculated by position displacement is always larger than the mass of powder measured by the electronic balance. It indicates powder bulk density in tank is constantly changing during the powder pneumatic filling experiments. The actual powder bulk density in the powder tank is calculated by a model established in this paper, it’s found that when the mass flow rate of fluidization gas is low, the bulk density of the powder in the tank is increased first and then decreased, and the final bulk density is less than the initial value. While the mass flow rate of fluidization gas is high, powder bulk density in the tank is first increased, then decreased, then increased and then decreased, and the final bulk density is greater than the initial value. The compression mechanism of powder bulk density in the tank is similar to the motion law of the damper spring vibrator when it is forced to vibrate. It can be described by the damped second-order system response function. When the mass flow rate of fluidization gas is small, the damping coefficient of the system is smaller. While the mass flow rate of fluidization gas is large, the damping coefficient is larger and is variable.
-
Keywords:
- powder pneumatic filling /
- powder filling performance /
- compression mechanism of powder /
- damped second-order system
[1] 李悦, 胡春波, 胡加明, 朱小飞, 张力锋, 李超 2018 推进技术, 39 1681
Li Y, Hu C B, HU J M, Zhu X F, Zhang L F, Li C 2018 J. Propul. Technol. 39 1681
[2] 胡旭, 徐义华, 王洪远, 曾卓雄 2014 兵器装备工程学报 35 133Google Scholar
Hu X, Xu Y H, Wang H Y, Zeng Z X 2014 J. Ordnance Equip. Eng. 35 133Google Scholar
[3] Li Y, Hu C B, Deng Z, Li C, Sun H J, Cai Y P 2017 Acta Astronaut. 133 455Google Scholar
[4] Li C, Hu C B, Xin X, Li Y, Sun H J 2016 Acta Astronaut. 129 74Google Scholar
[5] 杨建刚, 胡春波, 邓哲, 朱小飞 2017 火炸药学报 40 36
Yang J G, Hu C B, Deng Z, Zhu X F 2017 Chin. J. Explos. Propell. 40 36
[6] 王磊, 厉彦忠, 马原, 谢福寿 2016 航空动力学报 31 2002
Wang L, Li Y Z, Ma Y, Xie F S 2016 J. Aerosp. Power 31 2002
[7] 李诗久, 周晓君 1992 气力输送理论与应用 (北京:机械工业出版社) 第111−119页
Li S J, Zhou X J 1992 Pneumatic Conveying Theory and Application (Beijing: Mechanical Industry Press) pp111−119 (in Chinese)
[8] Loftus H, Montanino L, Bryndle R 1972 8th American Institute of Aeronautics and Astronautics Conference New Orleans, America, November 29−December 1, 1972 p1162
[9] Meyer, Mike L 1993 30th Joint Army-Navy-NASA-Air Force Combustion Subcommittee Meeting Monterey, America, November 15−19, 1993 p13
[10] Xia Z X, Shen H J, Hu J X, Liu B 2008 44th American Institute of Aeronautics and Astronautics Conference Hartford, America, July 21−23, 2008 p5131
[11] Goroshin S, Higgins A, Kamel M 2001 37th American Institute of Aeronautics and Astronautics Conference Salt Lake City, America, July 8−11, 2001 p3919
[12] Ramjet, Scramjet and PDE, ONERA http://www.onera. fr/sites/default/files/ressources_documentaires/cours-exposes-conf/ramjet-scramjet-and-pde-an-introduction. pdf)[2019-11-14]
[13] Goroshin S, Higgins A, Lee J 1999 35th American Institute of Aeronautics and Astronautics Conference Los Angeles, America, June 20−24, 1999 p2408
[14] Sun H J, Hu C B, Zhu X F, Yang J G 2017 Exp. Therm. Fluid Sci 83 231Google Scholar
[15] J.W. Burr, H.D. Fricke and M.G. Sobieniak 1974 US Patent 3 812 671
[16] 杨晋朝, 夏智勋, 胡建新, 孔龙飞 2013 固体火箭术技术 36 37
Yang J C, Xia Z X, Hu J X, Kong L F 2013 J. Solid Rocket Technol. 36 37
[17] Sun H J, Hu C B, Zhang T, Deng Z 2016 Appl. Therm. Eng. 102 30Google Scholar
[18] Huang J, Xu S, Yi H, Hu S 2014 Powder Technol. 268 86Google Scholar
[19] 郝刚领, 许巧平, 李先雨, 王伟国 2019 物理学报 68 126101Google Scholar
Hao G L, Xu Q P, Li X Y, Wang W G 2019 Acta Phys. Sin. 68 126101Google Scholar
[20] Misra C, Kim S, Shen S, Sioutas C 2002 J. Aerosol Sci. 33 735Google Scholar
[21] Gu X F, Song J F, Wei Y D 2016 Powder Technol. 299 217Google Scholar
[22] Sibanda V, Greenwood R W, Seville J P K 2001 Powder Technol. 118 193Google Scholar
[23] Gupta R, Gidaspow D, Wasan D T 1993 Powder Technol. 75 79Google Scholar
[24] Amyotte P R, Eckhoff R K 2010 J. Chem. Health Safe. 17 15Google Scholar
[25] Yerazunis S, Cornell S W, Wintner B 1965 Nature 207 835Google Scholar
[26] 朱小飞, 胡春波, 杨建刚, 邓哲 2019 西北工业大学学报 37 20
Zhu X F, Hu C B, Yang J G, Li Y, Liu S N, Deng Z 2019 J. Northwest Polytech. Univ. 37 20
[27] 张权义, 彭政, 何润, 刘锐, 陆坤权, 厚美瑛 2007 物理学报 56 4708Google Scholar
Zhang Q Y, Peng Z, He R, Liu R, Lu K Q, Hou M Y 2007 Acta Phys. Sin. 56 4708Google Scholar
[28] 赵子渊, 李昱君, 王富帅, 张祺, 厚美瑛, 李文辉, 马钢 2018 物理学报 67 104502Google Scholar
Zhao Z Y, Li Y J, Wang F S, Zhang Q, Hou M Y, Li W H, Ma G 2018 Acta Phys. Sin. 67 104502Google Scholar
[29] 李智峰, 彭政, 蒋亦民 2014 物理学报 63 104503Google Scholar
Li Z F, Peng Z, Jiang Y M 2014 Acta Phys. Sin. 63 104503Google Scholar
[30] 杨林, 胡林, 张兴刚 2015 物理学报 64 134502Google Scholar
Yang L, Hu L, Zhang X G 2015 Acta Phys. Sin. 64 134502Google Scholar
[31] 张兴刚, 戴丹 2017 物理学报 66 204501Google Scholar
Zhang X G, Dai D 2017 Acta Phys. Sin. 66 204501Google Scholar
-
表 1 实验工况
Table 1. Experiment conditions.
工况 加注位置 流化气量/(g·s–1) 1# 壁面切向 3.2 2# 壁面切向 6.4 3# 垂直端盖 3.2 表 2 部分加注性能参数
Table 2. Some performance parameters of powder filling
工况 $t{\rm{/s}}$ $m{\rm{/g}}$ ${\bar {\dot m}}/({\rm{g}} \cdot {{\rm{s}}^{ - 1}}{\rm{)}}$ $H{\rm{/mm}}$ ${\rho _{\rm{c}}}{\rm{/(g}} \cdot {\rm{c}}{{\rm{m}}^{{\rm{ - 3}}}}{\rm{)}}$ $\eta $ 1# 70 1316 18.8 240.5 1.101 93.9% 2# 77 1002 13 174.3 1.142 68.1% 3# 286 1381 4.83 244.5 1.127 95.5% 表 3 工况1#和工况2#下二阶系统参数
Table 3. Second-order system parameters of test 1# and test 2#.
系统参数 ${\rho _{\min }}$ $K$ $\zeta $ ${\omega _{\rm{n}}}$ $\tau $ 备注 工况1# 874 165 0 0.095 –18.0 — 工况2# 1031 83 0.1 0.090 –6.5 $t$ ≤ 38 s 1031 107 0.38 0.100 14.0 $t$ > 38 s -
[1] 李悦, 胡春波, 胡加明, 朱小飞, 张力锋, 李超 2018 推进技术, 39 1681
Li Y, Hu C B, HU J M, Zhu X F, Zhang L F, Li C 2018 J. Propul. Technol. 39 1681
[2] 胡旭, 徐义华, 王洪远, 曾卓雄 2014 兵器装备工程学报 35 133Google Scholar
Hu X, Xu Y H, Wang H Y, Zeng Z X 2014 J. Ordnance Equip. Eng. 35 133Google Scholar
[3] Li Y, Hu C B, Deng Z, Li C, Sun H J, Cai Y P 2017 Acta Astronaut. 133 455Google Scholar
[4] Li C, Hu C B, Xin X, Li Y, Sun H J 2016 Acta Astronaut. 129 74Google Scholar
[5] 杨建刚, 胡春波, 邓哲, 朱小飞 2017 火炸药学报 40 36
Yang J G, Hu C B, Deng Z, Zhu X F 2017 Chin. J. Explos. Propell. 40 36
[6] 王磊, 厉彦忠, 马原, 谢福寿 2016 航空动力学报 31 2002
Wang L, Li Y Z, Ma Y, Xie F S 2016 J. Aerosp. Power 31 2002
[7] 李诗久, 周晓君 1992 气力输送理论与应用 (北京:机械工业出版社) 第111−119页
Li S J, Zhou X J 1992 Pneumatic Conveying Theory and Application (Beijing: Mechanical Industry Press) pp111−119 (in Chinese)
[8] Loftus H, Montanino L, Bryndle R 1972 8th American Institute of Aeronautics and Astronautics Conference New Orleans, America, November 29−December 1, 1972 p1162
[9] Meyer, Mike L 1993 30th Joint Army-Navy-NASA-Air Force Combustion Subcommittee Meeting Monterey, America, November 15−19, 1993 p13
[10] Xia Z X, Shen H J, Hu J X, Liu B 2008 44th American Institute of Aeronautics and Astronautics Conference Hartford, America, July 21−23, 2008 p5131
[11] Goroshin S, Higgins A, Kamel M 2001 37th American Institute of Aeronautics and Astronautics Conference Salt Lake City, America, July 8−11, 2001 p3919
[12] Ramjet, Scramjet and PDE, ONERA http://www.onera. fr/sites/default/files/ressources_documentaires/cours-exposes-conf/ramjet-scramjet-and-pde-an-introduction. pdf)[2019-11-14]
[13] Goroshin S, Higgins A, Lee J 1999 35th American Institute of Aeronautics and Astronautics Conference Los Angeles, America, June 20−24, 1999 p2408
[14] Sun H J, Hu C B, Zhu X F, Yang J G 2017 Exp. Therm. Fluid Sci 83 231Google Scholar
[15] J.W. Burr, H.D. Fricke and M.G. Sobieniak 1974 US Patent 3 812 671
[16] 杨晋朝, 夏智勋, 胡建新, 孔龙飞 2013 固体火箭术技术 36 37
Yang J C, Xia Z X, Hu J X, Kong L F 2013 J. Solid Rocket Technol. 36 37
[17] Sun H J, Hu C B, Zhang T, Deng Z 2016 Appl. Therm. Eng. 102 30Google Scholar
[18] Huang J, Xu S, Yi H, Hu S 2014 Powder Technol. 268 86Google Scholar
[19] 郝刚领, 许巧平, 李先雨, 王伟国 2019 物理学报 68 126101Google Scholar
Hao G L, Xu Q P, Li X Y, Wang W G 2019 Acta Phys. Sin. 68 126101Google Scholar
[20] Misra C, Kim S, Shen S, Sioutas C 2002 J. Aerosol Sci. 33 735Google Scholar
[21] Gu X F, Song J F, Wei Y D 2016 Powder Technol. 299 217Google Scholar
[22] Sibanda V, Greenwood R W, Seville J P K 2001 Powder Technol. 118 193Google Scholar
[23] Gupta R, Gidaspow D, Wasan D T 1993 Powder Technol. 75 79Google Scholar
[24] Amyotte P R, Eckhoff R K 2010 J. Chem. Health Safe. 17 15Google Scholar
[25] Yerazunis S, Cornell S W, Wintner B 1965 Nature 207 835Google Scholar
[26] 朱小飞, 胡春波, 杨建刚, 邓哲 2019 西北工业大学学报 37 20
Zhu X F, Hu C B, Yang J G, Li Y, Liu S N, Deng Z 2019 J. Northwest Polytech. Univ. 37 20
[27] 张权义, 彭政, 何润, 刘锐, 陆坤权, 厚美瑛 2007 物理学报 56 4708Google Scholar
Zhang Q Y, Peng Z, He R, Liu R, Lu K Q, Hou M Y 2007 Acta Phys. Sin. 56 4708Google Scholar
[28] 赵子渊, 李昱君, 王富帅, 张祺, 厚美瑛, 李文辉, 马钢 2018 物理学报 67 104502Google Scholar
Zhao Z Y, Li Y J, Wang F S, Zhang Q, Hou M Y, Li W H, Ma G 2018 Acta Phys. Sin. 67 104502Google Scholar
[29] 李智峰, 彭政, 蒋亦民 2014 物理学报 63 104503Google Scholar
Li Z F, Peng Z, Jiang Y M 2014 Acta Phys. Sin. 63 104503Google Scholar
[30] 杨林, 胡林, 张兴刚 2015 物理学报 64 134502Google Scholar
Yang L, Hu L, Zhang X G 2015 Acta Phys. Sin. 64 134502Google Scholar
[31] 张兴刚, 戴丹 2017 物理学报 66 204501Google Scholar
Zhang X G, Dai D 2017 Acta Phys. Sin. 66 204501Google Scholar
计量
- 文章访问数: 5847
- PDF下载量: 51
- 被引次数: 0