-
提出并实验验证了一种通过减小屏栅边缘小孔孔径消除双模式离子推力器中束流离子对三栅极系统减速栅边缘小孔溅射刻蚀的方法. 基于30 cm双模式离子推力器, 在小推力高比冲和大推力高功率两种工作模式下实验对比研究了屏栅边缘小孔孔径对推力器放电损耗、束流平直度和减速栅边缘小孔刻蚀速率和刻蚀范围的影响. 当束流半径95%外的屏栅小孔孔径缩小26%后, 30 cm双模式离子推力器在小推力高比冲模式和大推力高功率模式下放电损耗分别减小10%和21%; 束流平直度分别下降3%和10%; 减速栅边缘小孔存在离子溅射刻蚀的小孔排数由边缘5排减小到最边缘1排, 刻蚀速率明显减小, 并且当工作900 h后最边缘小孔刻蚀现象也消失. 实验结果表明: 减小屏栅边缘小孔孔径是一种解决双模式离子推力器小推力高比冲模式下束流离子对三栅极系统减速栅边缘小孔溅射刻蚀的有效方法, 而且不会降低推力器效率, 但是会造成束流均匀性变差.To eliminate the erosion in the apertures at the edge of the decelerate grid of a dual-mode ion thruster three-grid optical system, a new method of reducing the diameter of the apertures in the outer region of the screen grid is proposed. In order to investigate the method of influencing the discharge loss and the uniformity of the beam current density and also reducing the aperture erosion region and erosion rate of the decelerate grid, two kinds of three-grid optical systems are designed and fabricated with the same material and physical parameters except the diameter of the apertures in the outer region of the screen grid. The first kind is that the diameter of the aperture in the outer region of the screen grid is equal to that in middle region of the screen grid, it is designated as the same aperture diameter grid optical system. The second kind of three-grid optical system is that the diameter of screen apertures whose center distance from the center of grid is larger than 0.95 times the beam radius, is reduced by 26% and therefore the physical transparency of optical system is reduced by 8.8%, it is designated as the small aperture diameter grid optical system. The comparison between the same aperture diameter grid optical system and small aperture diameter grid optical system is performed by assembling them into a 30-cm-diameter dual-mode ion thruster, and the ion thruster performance test, beam flatness test and 600-h-endurance test are conducted in the two typical operation modes, namely the low thrust-high specific impulse mode and large thrust-high power mode. A comparison of small aperture diameter grid optical system with the same aperture diameter grid optical system shows that the discharge loss of the 30-cm dual-mode ion thruster in the low thrust-high specific impulse mode and large thrust-high power mode are reduced by 10% and 21% respectively, the beam flatness is decreased by 3% and 10% respectively, the number of rows of the apertures which are sputtered by beam ions at the edge of the decelerate grid is reduced from 5 to 1. In addition, the erosion rate is significantly reduced and the erosion phenomenon disappears after 900-h-long-duration operation. These results signify that reducing the screen grid aperture diameter in the outer region is an effective method to eliminate aperture erosion at the edge of the decelerate grid of a dual-mode ion thruster three-grid optical system and that this method will not reduce the efficiency of the thruster, but cause the beam current uniformity to worsen.
-
Keywords:
- dual-mode ion thruster /
- screen grid aperture diameter /
- aperture erosion /
- discharge loss
[1] 于达仁, 乔磊, 蒋文嘉, 刘辉 2020 推进技术 41 1
Yu D R, Qiao L, Jiang W J, Liu H 2020 J. Propul. Technol. 41 1
[2] Goebel D M, Martinez-Lavin M, Bond T A, King M 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, USA, July 7−10, 2002 p2002-4348-1
[3] Rawlin V K, Sovey J S, Hamley J A, et al. 1999 Presented at the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Albuquerque, USA, September 28−30, 1999 p99-4612-1
[4] Brophy J R, Mareucei M G, Ganapathi C B, Garner C E, Henry M D, Nakazono B, Noon D 2003 Presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference& Exhibit Huntsville, USA, 20−July 23, 2003 p2003-4542-1
[5] Rayman M D, Varghese P, Lehman D H, Livesay L 2000 Acta Astronaut. 47 475Google Scholar
[6] Garner C E, Rayman M D, Brophy J R, Mikes S C 2011 Presented at the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit San Diego, USA, July 31−August 03, 2011 p2011-5661-1
[7] Herman D A, Soulas G C, Patterson M J 2007 Presented at the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Cincinnati, USA, July 8−11, 2007 p2007-5212-1
[8] Snyder J S, Goebel D M, Hofer R R, Polk J E, Wallace N C, Simpson H 2012 J. Propul. Power 28 371Google Scholar
[9] 陈茂林, 夏广庆, 毛根旺 2014 物理学报 63 182901Google Scholar
Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901Google Scholar
[10] 陈茂林, 夏广庆, 杨正岩, 张斌, 徐宗琦, 毛根旺 2014 高电压技术 40 3012Google Scholar
Chen M L, Xia G Q, Yang Z Y, Zhang B, Xu Z Q, Mao G W 2014 High Volt. Eng. 40 3012Google Scholar
[11] 温正, 钟凌伟, 王一白, 李娟, 任军学 2011 强激光与粒子束 23 1640Google Scholar
Wen Z, Zhong L W, Wang Y B, Li J, Ren J X 2011 High Power Laser and Particle Beams 23 1640Google Scholar
[12] Brophy J R, Katz I, Polk J E, Anderson J R 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Indianapolis, USA, July 7−10, 2002 p2002-4261-1
[13] Wang J, Polk J, Brophy J, Katz I 2003 J. Propul. Power 19 1192Google Scholar
[14] Peng X H, Ruyten W M, Friedly V, Keefer D, Zhang Q 1994 Rev. Sci. Instrum. 65 1770Google Scholar
[15] 钟凌伟, 刘宇, 任军学, 仇钎 2010 航空动力学报 25 2125Google Scholar
Zhong L W, Liu Y, Ren J X, Qiu Q 2010 J. Aerosp. Power 25 2125Google Scholar
[16] 王二蒙, 楚豫川, 曹勇, 李娟 2013 高电压技术 39 1763Google Scholar
Wang E M, Chu Y C, Cao Y, Li J 2013 High Volt. Eng. 39 1763Google Scholar
[17] 贾艳辉, 李忠明, 张天平, 李娟 2012 中国空间科学技术 32 72Google Scholar
Jia Y H, Li Z M, Zhang T P, Li J 2012 Chin. Space Sci. Technol. 32 72Google Scholar
[18] 李娟, 刘洋, 楚豫川, 曹勇 2011 推进技术 32 751
Li J, Liu Y, Chu Y C, Cao Y 2011 J. Propul. Technol. 32 751
[19] 龙建飞, 张天平, 李娟, 贾艳辉 2017 物理学报 66 162901Google Scholar
Long J F, Zhang T P, Li J, Jia Y H 2017 Acta Phys. Sin. 66 162901Google Scholar
[20] Malone S P, Soulas G C 2004 Presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11−14, 2004 p2004-3784-1
[21] Patterson M J, Haag T W, Hovan S A 1993 Presented at the 23rd International Electric Propulsion Conference Seattle, USA, September 13−16, 1993 p1993-108-1
[22] Soulas G C, Kamhawi H, Patterson M J, Britton M A, Frandina M M 2004 Presented at the 40th AIAA/ASME/ SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11−14, 2004 p2004-3791-1
[23] Van Noord J L, Soulas G C, Sovey J S 2009 Presented at the 33th International Electric Propulsion Conference Ann Arbor, USA, September 20−24, 2009 p2009-163-1
[24] Herman D A, Soulas G C, Patterson M J 2007 Presented at the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Cincinnati, USA, July 8−11, 2007 p2007-5272-1
[25] 赵以德, 张天平, 黄永杰, 孙小菁, 孙运奎, 李娟, 杨福全, 池秀芬 2018 推进技术 39 942
Zhao Y D, Zhang T P, Huang Y J, Sun X J, Sun Y K, Li J, Yang F Q, Chi X F 2018 J. Propul. Technol. 39 942
[26] 赵以德, 吴宗海, 张天平, 耿海, 李娟, 李建鹏, 孙小菁, 杨浩 2020 推进技术 41 187
Zhao Y D, Wu Z H, Zhang T P, Geng H, LI J, Li J P, Sun X J, Yang H 2020 J. Propul. Technol. 41 187
-
图 4 实验后减速栅外观照片 (a)等孔径栅300 h后; (b)等孔径栅600 h后; (c)小孔径栅300 h后; (d)小孔径栅600 h后
Fig. 4. Photography of decelerate grid: (a) and (b) are the same aperture diameter grid optical system after 300 h and 600 h operation respectively; (c) and (d) are the small aperture diameter grid optical system after 300 h and 600 h opera-tion respectively.
表 1 30 cm双模式离子推力器主要参数
Table 1. Main parameters of 30 cm dual-mode ion thruster.
参数 小推力高比冲模式 大推力高功率模式 束电压/V 1450 1200 束电流/A 1.68 3.68 加速电压/V –220 –400 总流率/mg·s–1 2.551 5.831 理论推力/mN 100 200 理论比冲/s 4000 3500 理论功率/kW 2.8 5.1 表 2 两种栅极下30 cm双模式离子推力器工作平衡时电参数
Table 2. Steady-state operating parameters of 30 cm dual-mode ion thruster at two kinds of grid optical system.
参数名称 小推力高比冲模式 大推力高功率模式 等孔径栅 小孔径栅 等孔径栅 小孔径栅 屏栅电压/V 1420 1420 1170 1170 屏栅电流/A 1.68 1.68 3.68 3.68 加速电压/V –220 –220 –400 –400 放电电压/V 29.9 30.2 31.7 30.2 放电电流/A 9.82 8.72 23.62 19.62 阴极触持电压/V 9.0 8.9 9.2 8.3 阴极触持电流/A 0.6 0.6 0.6 0.6 中和器触持电压/V 14.2 14.2 11.7 11.0 中和器触持电流/A 1.6 1.6 1.6 1.6 -
[1] 于达仁, 乔磊, 蒋文嘉, 刘辉 2020 推进技术 41 1
Yu D R, Qiao L, Jiang W J, Liu H 2020 J. Propul. Technol. 41 1
[2] Goebel D M, Martinez-Lavin M, Bond T A, King M 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, USA, July 7−10, 2002 p2002-4348-1
[3] Rawlin V K, Sovey J S, Hamley J A, et al. 1999 Presented at the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Albuquerque, USA, September 28−30, 1999 p99-4612-1
[4] Brophy J R, Mareucei M G, Ganapathi C B, Garner C E, Henry M D, Nakazono B, Noon D 2003 Presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference& Exhibit Huntsville, USA, 20−July 23, 2003 p2003-4542-1
[5] Rayman M D, Varghese P, Lehman D H, Livesay L 2000 Acta Astronaut. 47 475Google Scholar
[6] Garner C E, Rayman M D, Brophy J R, Mikes S C 2011 Presented at the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit San Diego, USA, July 31−August 03, 2011 p2011-5661-1
[7] Herman D A, Soulas G C, Patterson M J 2007 Presented at the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Cincinnati, USA, July 8−11, 2007 p2007-5212-1
[8] Snyder J S, Goebel D M, Hofer R R, Polk J E, Wallace N C, Simpson H 2012 J. Propul. Power 28 371Google Scholar
[9] 陈茂林, 夏广庆, 毛根旺 2014 物理学报 63 182901Google Scholar
Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901Google Scholar
[10] 陈茂林, 夏广庆, 杨正岩, 张斌, 徐宗琦, 毛根旺 2014 高电压技术 40 3012Google Scholar
Chen M L, Xia G Q, Yang Z Y, Zhang B, Xu Z Q, Mao G W 2014 High Volt. Eng. 40 3012Google Scholar
[11] 温正, 钟凌伟, 王一白, 李娟, 任军学 2011 强激光与粒子束 23 1640Google Scholar
Wen Z, Zhong L W, Wang Y B, Li J, Ren J X 2011 High Power Laser and Particle Beams 23 1640Google Scholar
[12] Brophy J R, Katz I, Polk J E, Anderson J R 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Indianapolis, USA, July 7−10, 2002 p2002-4261-1
[13] Wang J, Polk J, Brophy J, Katz I 2003 J. Propul. Power 19 1192Google Scholar
[14] Peng X H, Ruyten W M, Friedly V, Keefer D, Zhang Q 1994 Rev. Sci. Instrum. 65 1770Google Scholar
[15] 钟凌伟, 刘宇, 任军学, 仇钎 2010 航空动力学报 25 2125Google Scholar
Zhong L W, Liu Y, Ren J X, Qiu Q 2010 J. Aerosp. Power 25 2125Google Scholar
[16] 王二蒙, 楚豫川, 曹勇, 李娟 2013 高电压技术 39 1763Google Scholar
Wang E M, Chu Y C, Cao Y, Li J 2013 High Volt. Eng. 39 1763Google Scholar
[17] 贾艳辉, 李忠明, 张天平, 李娟 2012 中国空间科学技术 32 72Google Scholar
Jia Y H, Li Z M, Zhang T P, Li J 2012 Chin. Space Sci. Technol. 32 72Google Scholar
[18] 李娟, 刘洋, 楚豫川, 曹勇 2011 推进技术 32 751
Li J, Liu Y, Chu Y C, Cao Y 2011 J. Propul. Technol. 32 751
[19] 龙建飞, 张天平, 李娟, 贾艳辉 2017 物理学报 66 162901Google Scholar
Long J F, Zhang T P, Li J, Jia Y H 2017 Acta Phys. Sin. 66 162901Google Scholar
[20] Malone S P, Soulas G C 2004 Presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11−14, 2004 p2004-3784-1
[21] Patterson M J, Haag T W, Hovan S A 1993 Presented at the 23rd International Electric Propulsion Conference Seattle, USA, September 13−16, 1993 p1993-108-1
[22] Soulas G C, Kamhawi H, Patterson M J, Britton M A, Frandina M M 2004 Presented at the 40th AIAA/ASME/ SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11−14, 2004 p2004-3791-1
[23] Van Noord J L, Soulas G C, Sovey J S 2009 Presented at the 33th International Electric Propulsion Conference Ann Arbor, USA, September 20−24, 2009 p2009-163-1
[24] Herman D A, Soulas G C, Patterson M J 2007 Presented at the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Cincinnati, USA, July 8−11, 2007 p2007-5272-1
[25] 赵以德, 张天平, 黄永杰, 孙小菁, 孙运奎, 李娟, 杨福全, 池秀芬 2018 推进技术 39 942
Zhao Y D, Zhang T P, Huang Y J, Sun X J, Sun Y K, Li J, Yang F Q, Chi X F 2018 J. Propul. Technol. 39 942
[26] 赵以德, 吴宗海, 张天平, 耿海, 李娟, 李建鹏, 孙小菁, 杨浩 2020 推进技术 41 187
Zhao Y D, Wu Z H, Zhang T P, Geng H, LI J, Li J P, Sun X J, Yang H 2020 J. Propul. Technol. 41 187
计量
- 文章访问数: 5993
- PDF下载量: 63
- 被引次数: 0