搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺Be硼团簇BeB$ _{ n}^{\bf 0/–} $ (n = 10—15)的基态结构和性质

李世雄 陈德良 张正平 隆正文

引用本文:
Citation:

掺Be硼团簇BeB$ _{ n}^{\bf 0/–} $ (n = 10—15)的基态结构和性质

李世雄, 陈德良, 张正平, 隆正文

Ground state structures and properties of Be atom doped boron clusters BeB$ _{ n}^{\bf 0/-} $($ n \bf = 10$–15)

Li Shi-Xiong, Chen De-Liang, Zhang Zheng-Ping, Long Zheng-Wen
PDF
HTML
导出引用
  • 基于密度泛函理论结合粒子群优化算法程序CALYPSO研究了掺Be硼团簇BeB$ _{n}^{ 0/–} $(n = 10—15)的基态几何结构; 然后采用密度泛函理论分析了最低能量结构的电子结构、极化率、红外光谱、紫外可见光谱特性. 研究结果表明: BeB$ _{10}^{ 0/–} $, BeB$ _{11}^- $, BeB$ _{12}^{0/−} $, BeB$ _{14}^- $具有平面或准平面结构; BeB11, BeB13, BeB$ _{13}^- $, BeB14分别具有半三明治结构、圆锥结构、笼型结构、压扁的管状结构; BeB$ _{15}^{0/−} $呈现手性对称结构. 自然布居分析(NPA)表明掺杂Be原子将电子转移给硼原子. 团簇的平均结合能分析可得, 阴离子比相应中性团簇的稳定性强; 另外, 随着n的增加, 中性和阴离子团簇的稳定性增强. 准平面结构BeB10, BeB$ _{11}^- $, BeB12团簇的适应性自然密度划分(AdNDP)分析表明, σ 键促进了整个分子的稳定性, 多中心π键进一步稳定了整个分子; 另外, 这三个团簇满足6个π电子Hückel规则(4m + 2), 具有芳香性. 极化率分析可得, 平面或准平面结构的每个原子的平均极化率大于其它结构, 说明平面或准平面结构的电子离域效应较大; BeB$ _{13}^- $, BeB$ _{14}^- $具有较大的第一超极化率, 说明具有较强的非线性光学响应. 红外光谱分析表明这些团簇具有不同的特征峰, 可用于鉴别这些结构; 闭壳层结构团簇的紫外可见光谱在可见光波段都有吸收峰, 开壳层结构团簇的紫外可见光谱在红外光波段都有吸收峰.
    A theoretical study of geometrical structures and electronic properties of Be atom doped boron clusters BeB$ _n^{0/-} $(n = 10–15) is performed using the CALYPSO approach for the global minimum search followed by density functional theory calculations. It is found that the global minima obtained for the BeB$ _{10}^{0/-} $, BeB$ _{11}^{-} $, BeB$ _{12}^{0/-} $, and BeB$ _{14}^{-} $ clusters correspond to the quasi-planar or planar structures. However, the global minima obtained for the BeB11, BeB13, BeB$ _{13}^{-} $, BeB14 clusters correspond to the half-sandwich, cone, cage, squashed tubular structures, respectively. Interestingly, both the neutral and anionic BeB$ _{15}^{0/-} $ clusters have the axially chiral isomers which are chiral with degenerate enantiomers. Natural population analyses reveal that partial charge on Be atom transfer to boron atoms. The average binding energy values of BeB$ _n^{0/-} $ (n = 10–15) indicate that anionic clusters are overall more stable than the corresponding neutral ones, and both neutral and anionic clusters show the same trend that the stability increases gradually with the increase of B atoms number n. Chemical bonding analyses of closed-shell BeB10, BeB$ _{11}^{-} $, BeB12 clusters reveal that the σ bonds stabilize whole molecular skeleton, and delocalized π bonds render the structure more stable. Furthermore, the three quasi-planar closed-shell clusters possess 3 delocalized π bonds, which quite surprisingly follow the 4m + 2 Hückel rule for aromaticity. Average polarizability of single atom for each quasi-planar or planar structure is larger than other structures, it indicates that quasi-planar or planar structure has stronger electron delocalization. Specifically, BeB$ _{13}^{-} $ and BeB$ _{14}^{-} $ with large first static hyperpolarizability can lead to the remarkable NLO response. The calculated spectra indicate that BeB$ _n^{0/-} $(n = 10–15) have the meaningful characteristic peaks which can be compared with future experimental values. Our work enriches the database of geometrical structures of doped boron clusters and can provide much insight into the new doped boron clusters.
      通信作者: 李世雄, leesxoptics@163.com
    • 基金项目: 国家自然科学基金青年基金基金(批准号: 11804065)和中央引导地方科技发展专项资金(批准号: 黔科中引地[2019]4012号)资助的课题
      Corresponding author: Li Shi-Xiong, leesxoptics@163.com
    • Funds: Project Supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11804065) and the Central Guiding Local Science and Technology Development Foudation of China (Grant No. QK ZYD[2019]4012)
    [1]

    Kroto H W, Heath J R, O’Brien S C, Curl R F, Smalley R E 1985 Nature 318 162Google Scholar

    [2]

    Iijima S 1991 Nature 354 56Google Scholar

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [4]

    Boustani I 1997 Phys. Rev. B 55 16426Google Scholar

    [5]

    Zhai H J, Wang L S, Alexandrova A N, Boldyrev A I 2002 J. Chem. Phys. 117 7917Google Scholar

    [6]

    Zhai H J, Kiran B, Li J, Wang L S 2003 Nat. Mater. 2 827Google Scholar

    [7]

    Kiran B, Bulusu S, Zhai H J, Yoo S, Zeng X C, Wang L S 2005 Proc. Natl. Acad. Sci. U. S. A. 102 961Google Scholar

    [8]

    Bean D E, Fowler P W 2009 J. Phys. Chem. C 113 15569Google Scholar

    [9]

    Chen Q, Wei G F, Tian W J, Bai H, Liu Z P, Zhai H J, Li S D 2014 Phys. Chem. Chem. Phys. 16 18282Google Scholar

    [10]

    Sergeeva A P, Popov I A, Piazza Z A, Li W L, Romanescu C, Wang L S, Boldyrev A I 2014 Acc. Chem. Res. 47 1349Google Scholar

    [11]

    Jian T, Chen X, Li S D, Boldyrev A I, Li J, Wang L S 2019 Chem. Soc. Rev. 48 3550Google Scholar

    [12]

    Piazza Z A, Hu H S, Li W L, Zhao Y F, Li J, Wang L S 2014 Nat. Commun. 5 3113Google Scholar

    [13]

    Casillas R, Baruah T, Zope R R 2013 Chem. Phys. Lett. 557 15Google Scholar

    [14]

    Pham H T, Duong L V, Pham B Q, Nguyen M T 2013 Chem. Phys. Lett. 577 32Google Scholar

    [15]

    Lü J, Wang Y, Zhu L, Ma Y 2014 Nanoscale 6 11692Google Scholar

    [16]

    Zhai H J, Zhao Y F, Li W L, Chen Q, Bai H, Hu H S, Piazza Z A, Tian W J, Lu H G, Wu Y B, Mu Y W, Wei G F, Liu Z P, Li J, Li S D, Wang L S 2014 Nat. Chem. 6 727Google Scholar

    [17]

    Bai H, Chen Q, Zhai H J, Li S D 2015 Angew. Chem. Int. Ed. 54 941Google Scholar

    [18]

    Li S X, Zhang Z P, Long Z W, Qin S J 2017 RSC Advances 7 38526Google Scholar

    [19]

    Dong H, Hou T, Lee S T, Li Y 2015 Sci. Rep. 5 9952Google Scholar

    [20]

    An Y, Zhang M, Wu D, Fu Z, Wang T, Xia C 2016 Phys. Chem. Chem. Phys. 18 12024Google Scholar

    [21]

    Bai H, Bai B, Zhang L, Huang W, Mu Y W, Zhai H J, Li S D 2016 Sci. Rep. 6 35518Google Scholar

    [22]

    Shakerzadeh E, Biglari Z, Tahmasebi E 2016 Chem. Phys. Lett. 654 76Google Scholar

    [23]

    Tang C, Zhang X 2016 Int. J. Hydrogen Energy 41 16992Google Scholar

    [24]

    Li S, Zhang Z, Long Z, Chen D 2019 ACS Omega 4 5705Google Scholar

    [25]

    李世雄, 张正平, 隆正文, 秦水介 2017 物理学报 66 103102Google Scholar

    Li S X, Zhang Z P, Long Z W, Qin S J 2017 Acta Phys. Sin. 66 103102Google Scholar

    [26]

    Popov I A, Li W L, Piazza Z A, Boldyrev A I, Wang L S 2014 J. Phys. Chem. A 118 8098Google Scholar

    [27]

    Liang W Y, Das A, Dong X, Cui Z H 2018 Phys. Chem. Chem. Phys. 20 16202Google Scholar

    [28]

    Wang W, Guo Y D, Yan X H 2016 RSC Advances 6 40155Google Scholar

    [29]

    Saha R, Kar S, Pan S, Martinez G G, Merino G, Chattaraj P K 2017 J. Phys. Chem. A 121 2971Google Scholar

    [30]

    Lü J, Wang Y, Zhu L, Ma Y 2012 J. Chem. Phys. 137 084104Google Scholar

    [31]

    Adamo C, Barone V 1999 J. Chem. Phys. 110 6158Google Scholar

    [32]

    Weigend F, Ahlrichs R 2005 Phys. Chem. Chem. Phys. 7 3297Google Scholar

    [33]

    Frisch M J, Trucks G W, Schlegel H B et al. 2016 Gaussian 16 (Rev. A.03). Gaussian: Inc., Wallingford CT

    [34]

    Zubarev D Y, Boldyrev A I 2008 Phys. Chem. Chem. Phys. 10 5207Google Scholar

    [35]

    Lu T, Chen F 2012 J. Comput. Chem. 33 580Google Scholar

    [36]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33Google Scholar

    [37]

    Cheng L 2012 J. Chem. Phys. 136 104301Google Scholar

    [38]

    Mayer I 1983 Chem. Phys. Lett. 97 270Google Scholar

    [39]

    Schmider H L, Becke A D 2000 J. Mol. Struct. THEOCHEM 527 51Google Scholar

  • 图 1  团簇结构图, 分图中上图为正面观察、下图为侧面观察 (a) BeB10; (b) BeB$ _{10}^- $; (c) BeB11; (d) BeB$ _{11}^- $; (e) BeB12; (f) BeB$ _{12}^- $; (g) BeB13; (h) BeB$ _{13}^- $; (i) BeB14; (j) BeB$ _{14}^- $; (k) BeB15 I; (l) BeB$ _{15}^- $ I; (m) BeB15 II; (n) BeB$ _{15}^- $ II

    Fig. 1.  Structures of doped boron clusters BeB$_{n}^{ 0/–}$(n = 10−15): (a) BeB10; (b) BeB$ _{10}^- $; (c) BeB11; (d) BeB$ _{11}^- $; (e) BeB12; (f) BeB$ _{12}^- $; (g) BeB13; (h) BeB$ _{13}^- $; (i) BeB14; (j) BeB$ _{14}^- $; (k) BeB15 I; (l) BeB$ _{15}^- $ I; (m) BeB15 II; (n) BeB$ _{15}^- $ II.

    图 2  分子轨道图 (a) HOMO BeB10; (b) LUMO BeB10; (c) HOMO BeB$_{11}^{-}$; (d) LUMO BeB$_{11}^{-}$; (e) HOMO BeB12; (f) LUMO BeB12; (g) HOMO BeB$_{13}^{-}$; (h) LUMO BeB$_{13}^{-}$; (i) HOMO BeB14; (j) LUMO BeB14; (k) HOMO BeB$_{15}^{-}$ I; (l) LUMO BeB$_{15}^{-}$ I; (m) HOMO BeB$_{15}^{-}$ II; (n) LUMO BeB$_{15}^{-}$ II

    Fig. 2.  Molecular orbitals: (a) HOMO BeB10; (b) LUMO BeB10; (c) HOMO BeB$ _{11}^- $; (d) LUMO BeB$ _{11}^- $; (e) HOMO BeB12; (f) LUMO BeB12; (g) HOMO BeB$ _{13}^- $; (h) LUMO BeB$ _{13}^- $; (i) HOMO BeB14; (j) LUMO BeB14; (k) HOMO BeB$ _{15}^- $ I; (l) LUMO BeB$_{15}^{-}$ I; (m) HOMO BeB$_{15}^{-}$ II; (n) LUMO BeB$_{15}^{-}$ II.

    图 3  BeB10的AdNDP分析, ON代表占据数, 黄色球代表Be原子

    Fig. 3.  Bonding patterns of BeB10 from AdNDP analyses. The occupation numbers (ONs) are indicated and the yellow ball represents Be atom.

    图 4  BeB$_{11}^{-}$的AdNDP分析, ON代表占据数, 黄色球代表Be原子

    Fig. 4.  Bonding patterns of BeB$_{11}^{-}$ from AdNDP analyses. The occupation numbers (ONs) are indicated and the yellow ball represents Be atom.

    图 5  BeB12的AdNDP分析, ON代表占据数, 黄色球代表Be原子

    Fig. 5.  Bonding patterns of BeB12 from AdNDP analyses. The occupation numbers (ONs) are indicated and the yellow ball represents Be atom.

    图 6  定域化轨道函数LOL, 等值面数值为0.5 (a) BeB10; (b) BeB$_{11}^{-}$; (c) BeB12

    Fig. 6.  Localized orbital locator, the isovalue is set to 0. 5: (a) BeB10; (b) BeB$_{11}^{-}$; (c) BeB12.

    图 7  定域化轨道函数LOL, 等值面数值为0.56 (a) BeB10; (b) BeB$_{11}^{-}$; (c) BeB12

    Fig. 7.  Localized orbital locator, the isovalue is set to 0. 56: (a) BeB10; (b) BeB$_{11}^{-}$; (c) BeB12.

    图 8  定域化轨道函数LOL, 等值面数值为0.6 (a) BeB10; (b) BeB$_{11}^{-}$; (c) BeB12

    Fig. 8.  Localized orbital locator, the isovalue is set to 0.6. (a) BeB10; (b) BeB$_{11}^{-}$ (c) BeB12.

    图 9  红外光谱 (a) BeB10; (b) BeB$_{10}^{-}$; (c) BeB11; (d) BeB$_{11}^{-}$; (e) BeB12; (f) BeB$_{12}^{-}$; (g) BeB13; (h) BeB$_{13}^{-}$; (i) BeB14; (j) BeB$_{14}^{-}$; (k) BeB15 I; (l) BeB$_{15}^{-}$ I

    Fig. 9.  Calculated infrared spectra: (a) BeB10; (b) BeB$_{10}^{-}$; (c) BeB11; (d) BeB$_{11}^{-}$; (e) BeB12; (f) BeB$_{12}^{-}$; (g) BeB13; (h) BeB$_{13}^{-}$; (i) BeB14; (j) BeB$_{14}^{-}$; (k) BeB15 I; (l) BeB$_{15}^{-}$ I.

    图 10  紫外可见光谱 (a) BeB10; (b) BeB$_{11}^{-}$; (c) BeB12; (d) BeB$_{13}^{-}$; (e) BeB14; (f) BeB$_{15}^{-}$ I

    Fig. 10.  Calculated UV-Vis spectra: (a) BeB10; (b) BeB$_{11}^{-}$; (c) BeB12; (d) BeB$_{13}^{-}$; (e) BeB14; (f) BeB$_{15}^{-}$ I.

    图 11  紫外可见光谱 (a) BeB$_{10}^{-}$; (b) BeB11; (c) BeB$_{12}^{-}$; (d) BeB13; (e) BeB$_{14}^{-}$; (f) BeB15 I

    Fig. 11.  Calculated UV-Vis spectra: (a) BeB$_{10}^{-}$; (b) BeB11; (c) BeB$_{12}^{-}$; (d) BeB13; (e) BeB$_{14}^{-}$; (f) BeB15 I.

    表 1  BeB$_{n}^{ 0/–}$ (n = 10—15)的几何参数

    Table 1.  Geometrical parameters of BeB$ _{n}^{ 0/–} $(n = 10−15).

    Symmetry最短Be—B键长/Å结构
    BeB10Cs1.83准平面结构
    BeB$ _{10}^- $Cs1.80准平面结构
    BeB11Cs1.97半三明治结构
    BeB$ _{11}^- $Cs1.86准平面结构
    BeB12Cs1.85准平面结构
    BeB$ _{12}^- $C2v1.83平面结构
    BeB13C2v1.93圆锥结构
    BeB$ _{13}^- $Cs1.80笼型结构
    BeB14C21.88压扁的管状结构
    BeB$ _{14}^- $C21.84准平面结构
    BeB15 IC11.87三维结构
    BeB15 IIC11.87三维结构
    BeB$ _{15}^- $ I C1 1.84 三维结构
    BeB$ _{15}^- $ IIC11.84三维结构
    下载: 导出CSV

    表 2  BeB$ _{n}^{ 0/–} $(n = 10—15)的最低谐振频率和平均结合能

    Table 2.  The lowest frequencies and average binding energy of BeB$ _{n}^{ 0/–} $(n = 10−15).

    BeB10BeB$_{10}^{-}$BeB11BeB$ _{11}^{-} $BeB12BeB$ _{12}^{-} $BeB13BeB$ _{13}^{-} $BeB14BeB$ _{14}^{-} $BeB15 I, IIBeB$ _{15}^{-} $ I, II
    最低谐振频率/cm–111710923665119651712282431037391
    平均结合能/eV4.715.064.785.164.895.174.915.194.975.224.975.26
    下载: 导出CSV

    表 3  BeB$ _{n}^{ 0/–} $(n = 10—15)的偶极矩, Eg, NPA电荷. 上标a, b 代表自旋向上和自旋向下电子

    Table 3.  The dipole moments (μ), energy gaps (Eg), and NPA charges on doped atom of BeB$ _{n}^{ 0/–} $(n = 10−15). The markers “a” and “b” denote the alpha and beta electrons, respectively.

    BeB10BeB$_{10}^{-}$BeB11BeB$_{11}^{-}$BeB12BeB$_{12}^{-}$BeB13BeB$_{13}^{-}$BeB14BeB$_{14}^{-}$BeB15 I, IIBeB$_{15}^{-}$ I, II
    μ/ Debye0.800.581.491.591.310.660.221.122.570.861.951.88
    Eg/eV2.942.81a
    2.63b
    3.10a
    2.94b
    3.482.931.67a
    3.08b
    2.93a
    3.55b
    3.333.801.85a
    1.99b
    3.23a
    2.26b
    3.35
    NPA charges
    on doped atom
    1.621.641.561.371.641.661.721.601.691.681.701.67
    下载: 导出CSV

    表 4  BeB$ _n^{0/-} $(n = 10—15)的极化率

    Table 4.  Polarizabilities of BeB$ _n^{0/-} $(n = 10−15).

    各项同性平均极化率α每个原子的平均极化率$\bar \alpha $各项异性极化率Δα第一超极化率β0偶极矩方向上的投影值βprj
    BeB10167.3215.21124.78133.79–59.10
    BeB$ _{10}^- $196.0817.83142.11216.95–113.85
    BeB11153.1712.7663.19319.45155.00
    BeB$ _{11}^- $203.9016.99139.92233.54199.10
    BeB12196.3115.10145.5124.986.10
    BeB$ _{12}^- $223.7717.21164.05254.97–254.97
    BeB13174.0812.4348.6261.41–26.71
    BeB$ _{13}^- $210.5615.04119.68941.20–901.01
    BeB14191.4412.7673.13450.89–450.89
    BeB$ _{14}^- $260.0917.34203.63958.78–958.78
    BeB15 I 215.11 13.44 122.84 601.71 –597.78
    BeB15 II215.1213.44122.87604.10–600.31
    BeB$ _{15}^- $ I 235.61 14.73 130.97 516.03 –223.98
    BeB$ _{15}^- $ II235.6214.73130.93517.15–224.33
    下载: 导出CSV

    表 5  BeB$ _n^{0/-} $(n = 10—15)的激发特性

    Table 5.  The excitation properties of BeB$ _n^{0/-} $(n = 10−15).

    振子强度最大的激发态的波长/nm
    (振子强度, 第几激发态)
    第一激发态的波长/nm
    (振子强度)
    第一个吸收峰位置/nm
    (对应第几激发态)
    BeB10252 (0.2108, 22)748 (0.0003)748 (1)
    BeB$ _{10}^- $313 (0.1205, 34)1038 (0.0001)887 (5)
    BeB11331 (0.0077, 22)859 (0.0022)859 (1)
    BeB$ _{11}^- $242 (0.3008, 27)548 (0)510 (2)
    BeB12282 (0.2870, 22)702 (0.0038)702 (1)
    BeB$ _{12}^- $346 (0.0119, 32)3201 (0.0003)3201 (1)
    BeB13308 (0.0377, 31)800 (0.0015)800 (1)
    BeB$ _{13}^- $234 (0.0875, 36)582 (0.0003)582 (1)
    BeB14311 (0.1049, 15)468 (0.0041)468 (1)
    BeB$ _{14}^- $533 (0.0472, 14)1984 (0)982 (4—6)
    BeB15 I339 (0.0295, 33)1292 (0.0006)1122 (1—2)
    BeB$ _{15}^- $ I276 (0.0954, 24)531 (0.0027)531 (1)
    下载: 导出CSV
  • [1]

    Kroto H W, Heath J R, O’Brien S C, Curl R F, Smalley R E 1985 Nature 318 162Google Scholar

    [2]

    Iijima S 1991 Nature 354 56Google Scholar

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [4]

    Boustani I 1997 Phys. Rev. B 55 16426Google Scholar

    [5]

    Zhai H J, Wang L S, Alexandrova A N, Boldyrev A I 2002 J. Chem. Phys. 117 7917Google Scholar

    [6]

    Zhai H J, Kiran B, Li J, Wang L S 2003 Nat. Mater. 2 827Google Scholar

    [7]

    Kiran B, Bulusu S, Zhai H J, Yoo S, Zeng X C, Wang L S 2005 Proc. Natl. Acad. Sci. U. S. A. 102 961Google Scholar

    [8]

    Bean D E, Fowler P W 2009 J. Phys. Chem. C 113 15569Google Scholar

    [9]

    Chen Q, Wei G F, Tian W J, Bai H, Liu Z P, Zhai H J, Li S D 2014 Phys. Chem. Chem. Phys. 16 18282Google Scholar

    [10]

    Sergeeva A P, Popov I A, Piazza Z A, Li W L, Romanescu C, Wang L S, Boldyrev A I 2014 Acc. Chem. Res. 47 1349Google Scholar

    [11]

    Jian T, Chen X, Li S D, Boldyrev A I, Li J, Wang L S 2019 Chem. Soc. Rev. 48 3550Google Scholar

    [12]

    Piazza Z A, Hu H S, Li W L, Zhao Y F, Li J, Wang L S 2014 Nat. Commun. 5 3113Google Scholar

    [13]

    Casillas R, Baruah T, Zope R R 2013 Chem. Phys. Lett. 557 15Google Scholar

    [14]

    Pham H T, Duong L V, Pham B Q, Nguyen M T 2013 Chem. Phys. Lett. 577 32Google Scholar

    [15]

    Lü J, Wang Y, Zhu L, Ma Y 2014 Nanoscale 6 11692Google Scholar

    [16]

    Zhai H J, Zhao Y F, Li W L, Chen Q, Bai H, Hu H S, Piazza Z A, Tian W J, Lu H G, Wu Y B, Mu Y W, Wei G F, Liu Z P, Li J, Li S D, Wang L S 2014 Nat. Chem. 6 727Google Scholar

    [17]

    Bai H, Chen Q, Zhai H J, Li S D 2015 Angew. Chem. Int. Ed. 54 941Google Scholar

    [18]

    Li S X, Zhang Z P, Long Z W, Qin S J 2017 RSC Advances 7 38526Google Scholar

    [19]

    Dong H, Hou T, Lee S T, Li Y 2015 Sci. Rep. 5 9952Google Scholar

    [20]

    An Y, Zhang M, Wu D, Fu Z, Wang T, Xia C 2016 Phys. Chem. Chem. Phys. 18 12024Google Scholar

    [21]

    Bai H, Bai B, Zhang L, Huang W, Mu Y W, Zhai H J, Li S D 2016 Sci. Rep. 6 35518Google Scholar

    [22]

    Shakerzadeh E, Biglari Z, Tahmasebi E 2016 Chem. Phys. Lett. 654 76Google Scholar

    [23]

    Tang C, Zhang X 2016 Int. J. Hydrogen Energy 41 16992Google Scholar

    [24]

    Li S, Zhang Z, Long Z, Chen D 2019 ACS Omega 4 5705Google Scholar

    [25]

    李世雄, 张正平, 隆正文, 秦水介 2017 物理学报 66 103102Google Scholar

    Li S X, Zhang Z P, Long Z W, Qin S J 2017 Acta Phys. Sin. 66 103102Google Scholar

    [26]

    Popov I A, Li W L, Piazza Z A, Boldyrev A I, Wang L S 2014 J. Phys. Chem. A 118 8098Google Scholar

    [27]

    Liang W Y, Das A, Dong X, Cui Z H 2018 Phys. Chem. Chem. Phys. 20 16202Google Scholar

    [28]

    Wang W, Guo Y D, Yan X H 2016 RSC Advances 6 40155Google Scholar

    [29]

    Saha R, Kar S, Pan S, Martinez G G, Merino G, Chattaraj P K 2017 J. Phys. Chem. A 121 2971Google Scholar

    [30]

    Lü J, Wang Y, Zhu L, Ma Y 2012 J. Chem. Phys. 137 084104Google Scholar

    [31]

    Adamo C, Barone V 1999 J. Chem. Phys. 110 6158Google Scholar

    [32]

    Weigend F, Ahlrichs R 2005 Phys. Chem. Chem. Phys. 7 3297Google Scholar

    [33]

    Frisch M J, Trucks G W, Schlegel H B et al. 2016 Gaussian 16 (Rev. A.03). Gaussian: Inc., Wallingford CT

    [34]

    Zubarev D Y, Boldyrev A I 2008 Phys. Chem. Chem. Phys. 10 5207Google Scholar

    [35]

    Lu T, Chen F 2012 J. Comput. Chem. 33 580Google Scholar

    [36]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33Google Scholar

    [37]

    Cheng L 2012 J. Chem. Phys. 136 104301Google Scholar

    [38]

    Mayer I 1983 Chem. Phys. Lett. 97 270Google Scholar

    [39]

    Schmider H L, Becke A D 2000 J. Mol. Struct. THEOCHEM 527 51Google Scholar

  • [1] 蒋元祺, 彭平. 稳态Cu-Zr二十面体团簇电子结构的密度泛函研究. 物理学报, 2018, 67(13): 132101. doi: 10.7498/aps.67.20180296
    [2] 张耘, 王学维, 柏红梅. 第一性原理下铟锰共掺铌酸锂晶体的电子结构和吸收光谱. 物理学报, 2017, 66(2): 024208. doi: 10.7498/aps.66.024208
    [3] 杜建宾, 武德起, 唐延林, 隆正文. 外场作用下邻苯二甲酸二丁酯的分子结构和光谱研究. 物理学报, 2015, 64(7): 073101. doi: 10.7498/aps.64.073101
    [4] 高潭华, 吴顺情, 张鹏, 朱梓忠. 表面氢化的双层氮化硼的结构和电子性质. 物理学报, 2014, 63(1): 016801. doi: 10.7498/aps.63.016801
    [5] 吕瑾, 杨丽君, 王艳芳, 马文瑾. Al2Sn(n=210)团簇结构特征和稳定性的密度泛函理论研究. 物理学报, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [6] 姚建刚, 宫宝安, 王渊旭. NO在Yn(n=1–12)团簇表面的解离性吸附. 物理学报, 2013, 62(24): 243601. doi: 10.7498/aps.62.243601
    [7] 章正杰, 孟大维, 吴秀玲, 何开华, 樊孝玉, 刘卫平, 黄利武, 郑建平. 共掺杂金红石TiO2的电子结构和红外光谱研究. 物理学报, 2011, 60(3): 037802. doi: 10.7498/aps.60.037802
    [8] 张秀荣, 吴礼清, 饶倩. (OsnN)0,(n=16)团簇电子结构与光谱性质的理论研究. 物理学报, 2011, 60(8): 083601. doi: 10.7498/aps.60.083601
    [9] 伍冬兰, 谢安东, 万慧军, 阮文. 聚合型硼氢化物(BH3)n(n=13)的几何结构与光谱的研究. 物理学报, 2011, 60(10): 103101. doi: 10.7498/aps.60.103101
    [10] 朱海娜, 徐征, 赵谡玲, 张福俊, 孔超, 闫光, 龚伟. 量子阱结构对有机电致发光器件效率的影响. 物理学报, 2010, 59(11): 8093-8097. doi: 10.7498/aps.59.8093
    [11] 张秀荣, 高从花, 吴礼清, 唐会帅. WnNim(n+m≤7; m=1, 2)团簇电子结构与光谱性质的理论研究. 物理学报, 2010, 59(8): 5429-5438. doi: 10.7498/aps.59.5429
    [12] 陈亮, 徐灿, 张小芳. 氧化镁纳米管团簇电子结构的密度泛函研究. 物理学报, 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [13] 顾娟, 王山鹰, 苟秉聪. Au和3d过渡金属元素混合团簇结构、电子结构和磁性的研究. 物理学报, 2009, 58(5): 3338-3351. doi: 10.7498/aps.58.3338
    [14] 徐布一, 陈俊蓉, 蔡静, 李权, 赵可清. 2-(甲苯-4-磺酰胺基)-苯甲酸的结构、光谱与热力学性质的理论研究. 物理学报, 2009, 58(3): 1531-1536. doi: 10.7498/aps.58.1531
    [15] 黄 丹, 邵元智, 陈弟虎, 郭 进, 黎光旭. 纤锌矿结构Zn1-xMgxO电子结构及吸收光谱的第一性原理研究. 物理学报, 2008, 57(2): 1078-1083. doi: 10.7498/aps.57.1078
    [16] 刘峰斌, 汪家道, 陈大融. 氢、氧终端掺硼金刚石薄膜的电子结构. 物理学报, 2008, 57(2): 1171-1176. doi: 10.7498/aps.57.1171
    [17] 雷雪玲, 祝恒江, 葛桂贤, 王先明, 罗有华. 密度泛函理论研究BnNi(n=6—12)团簇的结构和磁性. 物理学报, 2008, 57(9): 5491-5499. doi: 10.7498/aps.57.5491
    [18] 邹 军, 黄涛华, 王 军, 张连翰, 周圣明, 徐 军. Ti: LiAlO2新型晶体的结构分析. 物理学报, 2006, 55(7): 3536-3539. doi: 10.7498/aps.55.3536
    [19] 王英伟, 王自东, 程灏波. 新型激光晶体Yb:KY(WO4)2的结构与光谱. 物理学报, 2006, 55(9): 4803-4808. doi: 10.7498/aps.55.4803
    [20] 刘玉真, 罗成林. 硅团簇的结构及生长模式——紧束缚分子动力学:Si11—Si32. 物理学报, 2004, 53(2): 592-595. doi: 10.7498/aps.53.592
计量
  • 文章访问数:  7250
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-19
  • 修回日期:  2020-06-29
  • 上网日期:  2020-08-28
  • 刊出日期:  2020-10-05

/

返回文章
返回