搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高重复频率水冷Nd:YAG激活镜放大器的温度特性

肖凯博 郑建刚 蒋新颖 蒋学君 吴文龙 严雄伟 王振国 郑万国

引用本文:
Citation:

高重复频率水冷Nd:YAG激活镜放大器的温度特性

肖凯博, 郑建刚, 蒋新颖, 蒋学君, 吴文龙, 严雄伟, 王振国, 郑万国

Temperature characteristics of high repetition rate water-cooled Nd:YAG active mirror amplifier

Xiao Kai-Bo, Zheng Jian-Gang, Jiang Xin-Ying, Jiang Xue-Jun, Wu Wen-Long, Yan Xiong-Wei, Wang Zhen-Guo, Zheng Wan-Guo
PDF
HTML
导出引用
  • 为解决高重复频率大能量激光放大器的热管理问题, 采用数值模拟与实验分析的方法, 对背面水冷Nd:YAG激活镜放大器的流体散热进行了研究. 基于低雷诺数k-ε湍流模型, 建立了流-固共轭传热多物理场耦合分析模型, 对比分析了近壁面处理方法对流体流动、对流扩散和热传导过程及温度分布的影响, 分析研究了不同冷却液流量和泵浦参数对流场特性、激光介质温度和波前分布的影响. 数值模拟表明: 激光介质的温度分布与固液边界层内的黏性作用密切相关, 且冷却液的热扩散主要发生在100 μm范围内; 激光介质的热沉积分布中心对称, 而温度分布沿水流方向不对称, 最大温升位于出水口端且基本保持不变; 增益介质前表面的温度分布与介质的波前分布随冷却液流量非线性变化, 而随泵浦参数线性变化; 实验结果与数值模拟符合较好.
    In order to deal with the thermal management problem of high-energy high-repetition rate laser amplifiers, the efficient heat removal in water-cooled Nd:YAG active mirror amplifiers is investigated in detail through numerical modeling and experimental analysis. According to the low Reynolds number k-ε turbulence model, a full fluid-solid conjugate heat transfer model is established to give a comprehensive model of flow and thermal characteristics in three dimensions. The thermal distributions obtained from the model are then used to calculate all mechanical stresses in the laser medium and thermally-induced wavefront distortions. In comparison with the standard k-ε turbulence model, the influences of the near-wall treatments of the above model on the process of fluid flow, convection diffusion and heat conduction, and temperature distributions are analyzed. Meanwhile, the effects of coolant flow rate and pump parameter on the flow field characteristics, temperature and wavefront distributions of the YAG disk are also studied. Numerical simulation results reveal that the temperature distribution of the laser medium is closely related to the viscous effect in the solid-liquid boundary layer. Although the heat deposition distribution of the laser medium is symmetrical, the temperature profile is asymmetrical as a result of the increasing water temperature along the water flow. The maximum temperature rise of the disk is at the outlet end, and the position remains almost unchanged. The front-surface temperature distributions and wavefront profiles of Nd:YAG vary nonlinearly with the coolant flow rates, but linearly with the pump parameter. Model predictions show that when the laser amplifier operates at a repetition rate of 50 Hz, the thermal diffusion of the coolant mainly occurs in a range of 100 μm, and the maximum temperature difference of the coolant reaches up to 10.85 ℃. Correspondingly, the maximum temperature variation over the front-surface active region is less than 4 ℃, with an average temperature of 49.62 ℃, which leads to a total peak-to-valley wave front distortion of 7.27λ. The experimentally measured temperature distributions are in reasonable agreement with numerical simulations. The research results are beneficial to designing and optimizing the high-energy, high-repetition rate water-cooled Nd:YAG active mirror amplifiers.
      通信作者: 蒋新颖, noveltymm@126.com
    • 基金项目: 中国工程物理研究院高能激光科学与技术重点实验室基金(批准号: 2020HEL05-2)资助的课题.
      Corresponding author: Jiang Xin-Ying, noveltymm@126.com
    • Funds: Project supported by the Key Laboratory of Science and Technology on High Energy Laser, CAEP (Grant No. 2020HEL05-2).
    [1]

    Chanteloup J C, Albach D 2011 IEEE Photonics J. 3 245Google Scholar

    [2]

    Erlandson A C, Aceves S M, Bayramian A J, Bullington A L, Beach R J 2011 Opt. Mater. Express 1 1341Google Scholar

    [3]

    Zheng J G, Jiang X Y, Yan X W, Zhang J, Wang Z G 2014 High Power Laser Sci. 2 1Google Scholar

    [4]

    Liu J, Li L, Shi X C, Chen R F, Wang J L, Chen W B 2018 Chin. Opt. Lett. 16 121402Google Scholar

    [5]

    Bayramian A, Armstrong P, Ault E, Beach R, Bibeau C, Caird J 2007 Fusion Sci. Technol. 52 383Google Scholar

    [6]

    Mason P, Divoky M, Ertel K, Pilar J, Butcher T, Hanus M 2017 Optica 4 438Google Scholar

    [7]

    Goncalves T, Albach D, Vincent B, Arzakantsyan M, Chanteloup J C 2013 Opt. Express 21 855Google Scholar

    [8]

    Liu T, Sui Z, Chen L, Li Z, Liu Q, Gong M, Fu X 2017 Opt. Express 25 21981Google Scholar

    [9]

    Jiang X, Wang Z, Yan X, Xue Q, Dai W, Wu W, Yao K 2019 Proc. SPIE 11333 113330MGoogle Scholar

    [10]

    Vanda J, Muresan M G, Bilek V, Sebek M, Hanus M 2017 Proc. SPIE 10447 104471AGoogle Scholar

    [11]

    Rostohar D, Koerner J, Boedefeld R, Lucianetti A, Mocek T 2017 IEEE 3rd International Forum on Research and Technologies for Society and Industry (RTSI) Modena, Italy, September 11–13, 2017 p17256709

    [12]

    Sawicka M, Divoky M, Slezak O, Vido M D, Lucianetti A, Mocek T 2019 IEEE J. Quantum Electron. 55 1Google Scholar

    [13]

    Chi H, Baumgarten C M, Jankowska E, Dehne K A, Murray G, Meadows A R, Berrill M, Reagan B A, Rocca J J 2019 J. Opt. Soc. Am. B 36 1084Google Scholar

    [14]

    Cini L, Mackenzie J I 2017 Appl. Phys. B 123 273Google Scholar

    [15]

    Dindarlu M H, Tehrani M K, Saghafifar H, Maleki A 2016 Laser Phys. 26 055001Google Scholar

    [16]

    黄文发, 李学春, 王江峰, 卢兴华, 张玉奇, 范薇, 林尊琪 2015 物理学报 64 087801Google Scholar

    Huang W F, Li X C, Wang J F, Lu X H, Zhang Y Q, Fan W, Lin Z Q 2015 Acta Phys. Sin. 64 087801Google Scholar

    [17]

    Shen Y, Bo Y, Zong N, Guo Y D, Peng Q J, Li J, Pan Y B, Zhang J Y, Cui D F, Xu Z Y 2015 IEEE J. Sel. Top. Quantum Electron. 21 1602408Google Scholar

    [18]

    李策, 冯国英, 杨火木 2016 物理学报 65 054204Google Scholar

    Li C, Feng G Y, Yang H M 2016 Acta Phys. Sin. 65 054204Google Scholar

    [19]

    Mason P D, Fitton M, Lintern A, Banerjee S, Ertel K 2015 Appl. Opt. 54 4227Google Scholar

    [20]

    Li P L, Fu X, Liu Q, Gong M L 2013 J. Opt. Soc. Am. B 30 2161Google Scholar

    [21]

    Wang J R, Min J C, Song Y Z 2006 Appl. Therm. Eng. 26 549Google Scholar

    [22]

    杨火木, 冯国英, 魏泳涛, 母健, 王树同, 王绍朋, 唐淳, 周寿桓 2013 中国激光 40 0902004Google Scholar

    Yang H M, Feng G Y, Wei Y T, Mu J, Wang S T, Wang S P, Tang C, Zhou S H 2013 Chin. J. Las. 40 0902004Google Scholar

    [23]

    王福军 2004 计算流体动力学分析: CFD软件原理与应用 (北京: 清华大学出版社) 第126—131页

    Wang F J 2004 Computational Fluid Dynamics Analysis: Principle and Application of CFD Software (Beijing: Tsinghua University Press) pp126—131 (in Chinese)

    [24]

    Fan T Y 1993 IEEE J. Quantum Electron. 29 1457Google Scholar

    [25]

    严雄伟, 於海武, 曹丁象, 李明中, 蒋东镔 2009 物理学报 58 4230Google Scholar

    Yan X W, Yu H W, Cao D X, Li M Z, Jiang D B 2009 Acta Phys. Sin. 58 4230Google Scholar

    [26]

    Aggarwal R L, Ripin D J, Ochoa J R, Fan T Y 2005 J. Appl. Phys. 98 103514Google Scholar

  • 图 1  水冷Nd:YAG激活镜放大器的模型 (a) 激活镜放大器结构; (b) 流道结构

    Fig. 1.  Simulational model of water-cooled Nd:YAG active mirror amplifeir: (a) Configuration of the active mirror amplifier; (b) configuration of cooling channel.

    图 2  (a) 激光介质中横向热沉积分布; (b) 流道中心截面流速分布比较; (c) 标准k-ε模型和(d) 低雷诺数k-ε模型中激光介质及固液边界层中的温度分布

    Fig. 2.  (a) Transverse heat density distribution in the laser medium. (b) Comparison of flow velocity distribution across the center of the cooling channel. Temperature profiles in the laser medium and the solid and liquid boundary layers obtained by (c) the standard k-ε model and (d) low Re k-ε model.

    图 3  激光介质沿 (a) x方向、(b) y方向、(c) z方向的应力分布; (d) 激光介质沿z方向的形变分布

    Fig. 3.  Thermal stress distributions in the laser medium along (a) x direction, (b) y direction, (c) z direction; (d) z-deformation of the laser medium.

    图 4  Nd:YAG中热致波前畸变(λ = 1064 nm) (a) 热光效应引起的畸变; (b) 形变引起的畸变; (c) 总波前畸变

    Fig. 4.  Thermally induced wavefront distortions in the Nd:YAG slab: (a) Thermal-optical effect induced wavefront distortion; (b) the deformation induced wavefront distortion; (c) the overall wavefront distortion.

    图 5  流量对Nd:YAG前表面温度分布和介质波前的影响 (a) 中心截面(x = 0)处温度分布曲线; (b) 平均温度和沿水流温差分布; (c) 波前分布

    Fig. 5.  Temperature field distributions and wavefront distortions of gain medium at different flow rates: (a) Temperature profiles across the center of gain medium; (b) mean temperature and temperature difference distributions; (c) wavefront distortions.

    图 6  Nd:YAG前表面平均温度、温差及介质波前随(a), (c)泵浦功率和(b), (d)重复频率的变化

    Fig. 6.  Average temperature and temperature difference on the front surface of Nd:YAG and the wavefront distortions of the gain medium at different (a), (c) pump intensities and (b), (d) repetition rates.

    图 7  50 Hz重复频率下Nd:YAG前表面的温度分布 (a) 数值模拟值; (b) 实验测量值

    Fig. 7.  Temperature field distributions on the front surface of Nd:YAG operating at the repetition rate of 50 Hz: (a) Numerical simulation results; (b) experimental results.

    图 8  (a) 实验测量的Nd:YAG最高温度点处沿水流方向的温度分布曲线; (b) Nd:YAG前表面平均温度和温差的理论与实验对比

    Fig. 8.  (a) Measured longitudinal temperature profiles through the peak temperature of Nd:YAG; (b) theoretical and experimental comparison of the average temperature and temperature difference on the front surface of Nd:YAG.

    表 1  计算过程中的物性参数

    Table 1.  Physical parameters used in the simulation.

    物性参数Nd:YAGOptical adhesiveH2O
    密度 ρ/(kg·m–3)45601160997
    热导率 k/(W·m–1·K–1)15.09(T/164.17)–0.752.11 × 10–3T + 1.810.6
    比热 Cp/(J·kg–1·K–1)125.4T 0.4005 – 626.41.48 – 9.72 × 10–3T + 1.79 × 10–5T 24182
    动力黏度 μ/(kg·m–1·s–1)1.0 × 10–3
    折射率 n01.821.65
    热光系数(dn/dT )/(10–6 K–1) –3.946 + 0.053T – 4.5 × 10–5T 2
    热膨胀系数 α/(10–6 K–1)–1.850 + 0.044T – 5.7 × 10–5T 258
    杨氏模量 υ/GPa3081
    泊松比0.2320.38
    下载: 导出CSV
  • [1]

    Chanteloup J C, Albach D 2011 IEEE Photonics J. 3 245Google Scholar

    [2]

    Erlandson A C, Aceves S M, Bayramian A J, Bullington A L, Beach R J 2011 Opt. Mater. Express 1 1341Google Scholar

    [3]

    Zheng J G, Jiang X Y, Yan X W, Zhang J, Wang Z G 2014 High Power Laser Sci. 2 1Google Scholar

    [4]

    Liu J, Li L, Shi X C, Chen R F, Wang J L, Chen W B 2018 Chin. Opt. Lett. 16 121402Google Scholar

    [5]

    Bayramian A, Armstrong P, Ault E, Beach R, Bibeau C, Caird J 2007 Fusion Sci. Technol. 52 383Google Scholar

    [6]

    Mason P, Divoky M, Ertel K, Pilar J, Butcher T, Hanus M 2017 Optica 4 438Google Scholar

    [7]

    Goncalves T, Albach D, Vincent B, Arzakantsyan M, Chanteloup J C 2013 Opt. Express 21 855Google Scholar

    [8]

    Liu T, Sui Z, Chen L, Li Z, Liu Q, Gong M, Fu X 2017 Opt. Express 25 21981Google Scholar

    [9]

    Jiang X, Wang Z, Yan X, Xue Q, Dai W, Wu W, Yao K 2019 Proc. SPIE 11333 113330MGoogle Scholar

    [10]

    Vanda J, Muresan M G, Bilek V, Sebek M, Hanus M 2017 Proc. SPIE 10447 104471AGoogle Scholar

    [11]

    Rostohar D, Koerner J, Boedefeld R, Lucianetti A, Mocek T 2017 IEEE 3rd International Forum on Research and Technologies for Society and Industry (RTSI) Modena, Italy, September 11–13, 2017 p17256709

    [12]

    Sawicka M, Divoky M, Slezak O, Vido M D, Lucianetti A, Mocek T 2019 IEEE J. Quantum Electron. 55 1Google Scholar

    [13]

    Chi H, Baumgarten C M, Jankowska E, Dehne K A, Murray G, Meadows A R, Berrill M, Reagan B A, Rocca J J 2019 J. Opt. Soc. Am. B 36 1084Google Scholar

    [14]

    Cini L, Mackenzie J I 2017 Appl. Phys. B 123 273Google Scholar

    [15]

    Dindarlu M H, Tehrani M K, Saghafifar H, Maleki A 2016 Laser Phys. 26 055001Google Scholar

    [16]

    黄文发, 李学春, 王江峰, 卢兴华, 张玉奇, 范薇, 林尊琪 2015 物理学报 64 087801Google Scholar

    Huang W F, Li X C, Wang J F, Lu X H, Zhang Y Q, Fan W, Lin Z Q 2015 Acta Phys. Sin. 64 087801Google Scholar

    [17]

    Shen Y, Bo Y, Zong N, Guo Y D, Peng Q J, Li J, Pan Y B, Zhang J Y, Cui D F, Xu Z Y 2015 IEEE J. Sel. Top. Quantum Electron. 21 1602408Google Scholar

    [18]

    李策, 冯国英, 杨火木 2016 物理学报 65 054204Google Scholar

    Li C, Feng G Y, Yang H M 2016 Acta Phys. Sin. 65 054204Google Scholar

    [19]

    Mason P D, Fitton M, Lintern A, Banerjee S, Ertel K 2015 Appl. Opt. 54 4227Google Scholar

    [20]

    Li P L, Fu X, Liu Q, Gong M L 2013 J. Opt. Soc. Am. B 30 2161Google Scholar

    [21]

    Wang J R, Min J C, Song Y Z 2006 Appl. Therm. Eng. 26 549Google Scholar

    [22]

    杨火木, 冯国英, 魏泳涛, 母健, 王树同, 王绍朋, 唐淳, 周寿桓 2013 中国激光 40 0902004Google Scholar

    Yang H M, Feng G Y, Wei Y T, Mu J, Wang S T, Wang S P, Tang C, Zhou S H 2013 Chin. J. Las. 40 0902004Google Scholar

    [23]

    王福军 2004 计算流体动力学分析: CFD软件原理与应用 (北京: 清华大学出版社) 第126—131页

    Wang F J 2004 Computational Fluid Dynamics Analysis: Principle and Application of CFD Software (Beijing: Tsinghua University Press) pp126—131 (in Chinese)

    [24]

    Fan T Y 1993 IEEE J. Quantum Electron. 29 1457Google Scholar

    [25]

    严雄伟, 於海武, 曹丁象, 李明中, 蒋东镔 2009 物理学报 58 4230Google Scholar

    Yan X W, Yu H W, Cao D X, Li M Z, Jiang D B 2009 Acta Phys. Sin. 58 4230Google Scholar

    [26]

    Aggarwal R L, Ripin D J, Ochoa J R, Fan T Y 2005 J. Appl. Phys. 98 103514Google Scholar

  • [1] 王学章, 李科群. 锂电池叉流流道液冷结构设计及散热特性分析. 物理学报, 2022, 71(18): 184702. doi: 10.7498/aps.71.20220212
    [2] 钟振, 张腾, 张杰, 陈世国. “嫦娥5号”登陆候选地Mons Rümker的光照与温度特征分析. 物理学报, 2020, 69(11): 119601. doi: 10.7498/aps.69.20200114
    [3] 程霄翔, 赵林, 葛耀君. 高超临界雷诺数区间内二维圆柱绕流的实测研究. 物理学报, 2016, 65(21): 214701. doi: 10.7498/aps.65.214701
    [4] 周子超, 王小林, 陶汝茂, 张汉伟, 粟荣涛, 周朴, 许晓军. 高功率梯度掺杂增益光纤温度特性理论研究. 物理学报, 2016, 65(10): 104204. doi: 10.7498/aps.65.104204
    [5] 李策, 冯国英, 杨火木. 流体直接冷却薄板条介质温度及应力的解析表达. 物理学报, 2016, 65(5): 054204. doi: 10.7498/aps.65.054204
    [6] 董繁龙, 葛廷武, 张雪霞, 谭祺瑞, 王智勇. 300 W侧面分布式抽运掺Yb全光纤放大器. 物理学报, 2015, 64(8): 084205. doi: 10.7498/aps.64.084205
    [7] 汤依伟, 贾明, 程昀, 张凯, 张红亮, 李劼. 基于电化学与热能的耦合关系演算聚合物锂离子动力电池的温度状态及分布. 物理学报, 2013, 62(15): 158201. doi: 10.7498/aps.62.158201
    [8] 陈焕庭, 吕毅军, 高玉琳, 陈忠, 庄榕榕, 周小方, 周海光. 功率型GaN基发光二极管芯片表面温度及亮度分布的物理特性研究. 物理学报, 2012, 61(16): 167104. doi: 10.7498/aps.61.167104
    [9] 吴洋, 许州, 徐勇, 金晓, 常安碧, 李正红, 黄华, 刘忠, 罗雄, 马乔生, 唐传祥. 低功率驱动的高功率微波放大器实验研究. 物理学报, 2011, 60(4): 044102. doi: 10.7498/aps.60.044102
    [10] 徐勇, 罗勇, 熊彩东, 李宏福, 邓学, 蒲友雷, 王晖, 王建勋, 鄢然. Kα波段TE01模基波回旋速调放大器的设计与实验. 物理学报, 2011, 60(4): 048403. doi: 10.7498/aps.60.048403
    [11] 王增, 董刚, 杨银堂, 李建伟. 考虑温度分布效应的非对称RLC树时钟偏差研究. 物理学报, 2010, 59(8): 5646-5651. doi: 10.7498/aps.59.5646
    [12] 孙海燕, 焦重庆, 罗积润. 分布损耗对回旋行波放大器稳定性的影响. 物理学报, 2009, 58(1): 238-242. doi: 10.7498/aps.58.238
    [13] 朱樟明, 郝报田, 钱利波, 钟波, 杨银堂. 考虑通孔效应和边缘传热效应的纳米级互连线温度分布模型. 物理学报, 2009, 58(10): 7130-7135. doi: 10.7498/aps.58.7130
    [14] 黄生荣, 陈 朝. 纳秒级脉冲激光诱导Zn掺杂过程中GaN/Al2O3材料的温度分布及热形变解析分析. 物理学报, 2007, 56(8): 4596-4601. doi: 10.7498/aps.56.4596
    [15] 吴建伟, 夏光琼, 吴正茂. 基于半导体光放大器和非线性光纤环镜的光脉冲压缩器的设计模型和理论分析. 物理学报, 2004, 53(4): 1105-1109. doi: 10.7498/aps.53.1105
    [16] 田洪涛, 陈 朝. 连续激光诱导Zn/InP掺杂过程中温度分布的解析计算. 物理学报, 2003, 52(2): 367-371. doi: 10.7498/aps.52.367
    [17] 蔡炜颖, 李志锋, 陆 卫, 李守荣, 梁平治. Si微电阻桥温度分布与热传导特性的显微Raman光谱研究. 物理学报, 2003, 52(11): 2923-2928. doi: 10.7498/aps.52.2923
    [18] 郑瑞伦, 陈洪, 刘俊. 矩形激光脉冲辐照下金属板材料温度分布研究. 物理学报, 2002, 51(3): 554-558. doi: 10.7498/aps.51.554
    [19] 吕晓阳, 李华兵. 用格子Boltzmann方法模拟高雷诺数下的热空腔黏性流. 物理学报, 2001, 50(3): 422-427. doi: 10.7498/aps.50.422
    [20] 刘慕仁, 孔令江. 用12bit格子气自动机模型模拟静止流和Couette流的温度分布. 物理学报, 1993, 42(6): 874-879. doi: 10.7498/aps.42.874
计量
  • 文章访问数:  5418
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-01
  • 修回日期:  2020-09-07
  • 上网日期:  2021-01-20
  • 刊出日期:  2021-02-05

/

返回文章
返回