搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同海面风速对量子卫星星舰通信性能的影响

聂敏 张帆 杨光 张美玲 孙爱晶 裴昌幸

引用本文:
Citation:

不同海面风速对量子卫星星舰通信性能的影响

聂敏, 张帆, 杨光, 张美玲, 孙爱晶, 裴昌幸

Effects of different sea surface wind speeds on performance of quantum satellite-to-ship communication

Nie Min, Zhang Fan, Yang Guang, Zhang Mei-Ling, Sun Ai-Jing, Pei Chang-Xing
PDF
HTML
导出引用
  • 量子卫星星舰通信是量子保密通信的重要应用场景之一, 在海面上, 由于不同风速所引起的气溶胶粒子浓度发生剧烈变化, 而气溶胶粒子浓度的剧变, 必然导致星舰量子链路性能的剧烈衰减. 然而, 有关不同海面风速与量子卫星星舰通信信道参数关系的研究, 迄今尚未展开. 本文根据海面风速与气溶胶的Gras模型, 分别建立了风速与星舰量子信道误码率、信道容量和信道平均保真度的定量关系. 仿真结果表明, 当风速分别为4 m/s和20 m/s时, 海洋大气信道误码率、信道容量、信道平均保真度分别依次为4.62 × 10–3和4.91 × 10–3、0.957和0.65、0.999和0.974. 由此可见, 风速对海上量子通信性能有显著的影响. 因此, 为了提高通信的可靠性, 应根据风速大小, 自适应调整系统的各项参数.
    In the ocean atmosphere boundary layer far from the continent, marine aerosols generally include two types: sea salt aerosols and secondary marine aerosols. The sea salt aerosols, also called sea salt droplets, stay in the atmosphere for a short time. The sea salt aerosols are produced by the splashing of waves caused by sea breeze on the sea surface. Quantum satellite-to-ship communication is one of the important application scenarios of quantum secret communication. The quantum satellite-to-ship communication is an important part of building a global quantum communication network. In the South China Sea, because the change of wind speed will cause a sharp change in the concentration of aerosol particles and the sharp change of the concentration of aerosol particles can change its own extinction characteristics, the change of aerosol extinction characteristics will inevitably lead to a dramatic attenuation of the satellite-to-ship’s quantum link performance. However, the research on the relationship between wind speed on the sea surface and quantum satellite satellite-to-ship communication channel parameters has not been carried out so far. In this paper, based on the Gras model of wind speeds on the sea surface and aerosol, the quantitative relationship between wind speed and satellite-to-ship quantum channel error rate, channel capacity and channel average fidelity are established respectively. The simulation results show that when the transmission distance is constant, as the sea surface wind speed increases, the channel bit error rate increases; as the wind speed increases, the channel capacity of quantum satellite satellite-to-ship communication decreases; when the source probability is constant, as the wind speed increases, the average fidelity of the channel shows a decreasing trend. When the wind speeds are 4 m/s and 20 m/s, the oceanic atmospheric channel error rate, channel capacity, and channel average fidelity are respectively 4.62 × 10–3 and 4.91 × 10–3, 0.957 and 0.65, 0.999 and 0.974. It can be seen that the wind speed has a significant effect on the performance of maritime quantum communication. Therefore, when quantum communication over the ocean, in order to improve the reliability of communication, the parameters of the system should be adaptively adjusted according to the wind speed.
      通信作者: 张帆, 13310997259@163.com
    • 基金项目: 国家自然科学基金(批准号: 61971348, 61201194)、陕西省国际科技合作与交流计划项目(批准号: 2015KW-013)和陕西省教育厅科研计划项目(批准号: 16JK1711)资助的课题
      Corresponding author: Zhang Fan, 13310997259@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61971348, 61201194), the International Scientific and Technological Cooperation and Exchange Program in Shaanxi Province, China (Grant No. 2015KW-013), and the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 16JK1711)
    [1]

    Dai J N, Liu Y M, Wang P, Fu X, Xia M, Wang T 2020 Atmos. Environ. 236 117604Google Scholar

    [2]

    Plauškaitė K, Špirkauskaitė N, Byčenkienė S, Kecorius S, Jasinevičienė D, Petelski T, Zielinski T, Andriejauskienė J, Barisevičiūtė R, Garbaras A, Makuch P, Dudoitis V, Ulevicius V 2017 Mar. Chem. 190 13Google Scholar

    [3]

    Ueda S, Miura K, Kawata R, Furutani H, Uematsu M, Omori Y, Tanimoto H 2016 Atmos. Environ. 142 324Google Scholar

    [4]

    Yin J, Li Y H, Liao S K, Yang M, Cao Y, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F H, Wang J Y, Peng C Z, Ekert A K, Pan J W 2020 Nature 582 501Google Scholar

    [5]

    Vergoossen T, Loarte S, Bedington R, Kuiper H, Ling A 2020 Acta Astronaut. 173 164Google Scholar

    [6]

    杨璐, 马鸿洋, 郑超, 丁晓兰, 高建存, 龙桂鲁 2017 物理学报 66 230303Google Scholar

    Yang L, Ma H Y, Zheng C, Ding X L, Gao J C, Long G L 2017 Acta Phys. Sin. 66 230303Google Scholar

    [7]

    Xue P, Wang K K, Wang X P 2017 Sci. Rep. 7 661Google Scholar

    [8]

    聂敏, 任杰, 杨光, 张美玲, 裴昌幸 2015 物理学报 64 150301Google Scholar

    Nie M, Ren J, Yang G, Zhang M L, Pei C X 2015 Acta Phys. Sin. 64 150301Google Scholar

    [9]

    谷文苑, 赵尚弘, 东晨, 朱卓丹, 屈亚运 2019 物理学报 68 090302Google Scholar

    Gu W Y, Zhao S H, Dong C, Zhu Z D, Qu Y Y 2019 Acta Phys. Sin. 68 090302Google Scholar

    [10]

    聂敏, 潘越, 杨光, 孙爱晶, 禹赛雅, 张美玲, 裴昌幸 2018 物理学报 67 140305Google Scholar

    Nie M, Pan Y, Yang G, Sun A J, Yu S Y, Zhang M L, Pei C Y 2018 Acta Phys. Sin. 67 140305Google Scholar

    [11]

    卫容宇, 聂敏, 杨光, 张美玲, 孙爱晶, 裴昌幸 2019 物理学报 68 140302Google Scholar

    Wei R Y, Nie M, Yang G, Zhang M L, Sun A J, Pei C X 2019 Acta Phys. Sin. 68 140302Google Scholar

    [12]

    Tian P F, Cao X J, Zhang L, Wang H B, Shi J S, Huang Z W, Zhou T, Liu H 2015 Atmos. Environ. 117 212Google Scholar

    [13]

    Dumka U C, Ningombam S S, Kaskaoutis D G, Madhavan B L, Song H J, Angchuk D, Jorphail S 2020 Sci. Total Environ. 734 139354Google Scholar

    [14]

    鲁先洋 2017 博士学位论文 (合肥: 中国科学技术大学)

    Lu X Y 2017 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [15]

    耿蒙 2017 硕士学位论文 (合肥: 中国科学技术大学)

    Geng M 2017 M.S. Thesis (Hefei: University of Science and Technology of China) (in Chinese)

    [16]

    王菲菲, 李学彬, 郑显明, 张文忠, 罗涛, 朱文越, 成巍, 邓志武 2019 红外与激光工程 48 89Google Scholar

    Wang F F, Li X B, Zheng X M, Zhang W Z, Luo T, Zhu W Y, Cheng W, Deng Z W 2019 Infrared Laser Eng. 48 89Google Scholar

    [17]

    张秀再, 徐茜, 刘邦宇 2020 光学学报 40 165

    Zhang X Z, Xu Q, Liu B Y 2020 Acta Optica Sin. 40 165

    [18]

    聂敏, 常乐, 杨光, 张美玲, 裴昌幸 2017 光子学报 46 16Google Scholar

    Nie M, Chang L, Yang G, Zhang M L, Pei C X 2017 Acta Phtonica Sin. 46 16Google Scholar

    [19]

    张登玉 2013 量子逻辑门与量子退相干 (北京: 科学出版社) 第90−110页

    Zhang D Y 2013 Quantum Logic Gates and Quantum Decoherence (Beijing: Science Press) pp90−110 (in Chinese)

    [20]

    尹浩, 马怀新 2006 军事量子通信概论(北京: 军事科学出版社) 第224−228页

    Yin H, Ma H X 2006 Introduction to Quantum Communication in Military (Beijing: Military Science Press) pp224−228 (in Chinese)

    [21]

    尹浩, 韩阳 2013 量子通信原理与技术(北京: 电子工业出版社) 第76−83页

    Yin H, Han Y 2013 Quantum Communication Theory and Technology (Beijing: Publishing House of Electronics Industry) pp76−83 (in Chinese)

    [22]

    尼尔森, 庄著(郑大钟, 赵千川译)2005 量子计算和量子信息(二) (北京: 清华大学出版社)第57−60页

    Nielsen A, Chuang I (translated by Zheng D Z, Zhao Q C) 2005 Quantum Computation and Quantum Information (Vol.2) (Beijing: TsingHua University Press) pp57−60 (in Chinese)

  • 图 1  量子卫星星舰通信

    Fig. 1.  Quantum satellite-to-ship communication.

    图 2  南海气溶胶粒子谱分布

    Fig. 2.  Size distribution of aerosol particle in the South China Sea.

    图 3  不同风速下的海洋气溶胶粒子谱分布

    Fig. 3.  Size distribution of marine aerosol particle under different wind speeds.

    图 4  信道误码率与风速、传输距离的关系

    Fig. 4.  Relationship between channel bit error rate and wind speed、transmission distance.

    图 5  信道容量与风速的关系

    Fig. 5.  Relationship between channel capacity and wind speed.

    图 6  信道平均保真度与风速、信源概率的关系

    Fig. 6.  Relationship between channel average fidelity and wind speed、source probability.

    表 1  南海气溶胶粒子谱分布各参量取值情况

    Table 1.  The value of each parameter of size distribution of aerosol particle in the South China Sea.

    Mode${N_{\rm{o}}}$${r_{\rm{g} } }/$μm${\sigma _{\rm{g}}}$
    Fine mode$254.93$$0.09$$0.53$
    Middle mode$7.96$$1$$0.7$
    下载: 导出CSV

    表 2  信道误码率各参量取值情况

    Table 2.  The value of each parameter of channel bit error rate.

    ${F_{\rm{s}}}$${R_{\rm{r}}}$$\mu $${P_{\rm{a}}}$${T_{\rm{a}}}$${\eta _{\rm{d}}}$${F_{\rm{m}}}$${n_1}$${n_2}$$\theta $
    $0.5$$0.5$$1$$0.5$$1$$0.65$$1$${10^{ - 3}}$${10^{ - 6}}$$\pi /6$
    下载: 导出CSV
  • [1]

    Dai J N, Liu Y M, Wang P, Fu X, Xia M, Wang T 2020 Atmos. Environ. 236 117604Google Scholar

    [2]

    Plauškaitė K, Špirkauskaitė N, Byčenkienė S, Kecorius S, Jasinevičienė D, Petelski T, Zielinski T, Andriejauskienė J, Barisevičiūtė R, Garbaras A, Makuch P, Dudoitis V, Ulevicius V 2017 Mar. Chem. 190 13Google Scholar

    [3]

    Ueda S, Miura K, Kawata R, Furutani H, Uematsu M, Omori Y, Tanimoto H 2016 Atmos. Environ. 142 324Google Scholar

    [4]

    Yin J, Li Y H, Liao S K, Yang M, Cao Y, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F H, Wang J Y, Peng C Z, Ekert A K, Pan J W 2020 Nature 582 501Google Scholar

    [5]

    Vergoossen T, Loarte S, Bedington R, Kuiper H, Ling A 2020 Acta Astronaut. 173 164Google Scholar

    [6]

    杨璐, 马鸿洋, 郑超, 丁晓兰, 高建存, 龙桂鲁 2017 物理学报 66 230303Google Scholar

    Yang L, Ma H Y, Zheng C, Ding X L, Gao J C, Long G L 2017 Acta Phys. Sin. 66 230303Google Scholar

    [7]

    Xue P, Wang K K, Wang X P 2017 Sci. Rep. 7 661Google Scholar

    [8]

    聂敏, 任杰, 杨光, 张美玲, 裴昌幸 2015 物理学报 64 150301Google Scholar

    Nie M, Ren J, Yang G, Zhang M L, Pei C X 2015 Acta Phys. Sin. 64 150301Google Scholar

    [9]

    谷文苑, 赵尚弘, 东晨, 朱卓丹, 屈亚运 2019 物理学报 68 090302Google Scholar

    Gu W Y, Zhao S H, Dong C, Zhu Z D, Qu Y Y 2019 Acta Phys. Sin. 68 090302Google Scholar

    [10]

    聂敏, 潘越, 杨光, 孙爱晶, 禹赛雅, 张美玲, 裴昌幸 2018 物理学报 67 140305Google Scholar

    Nie M, Pan Y, Yang G, Sun A J, Yu S Y, Zhang M L, Pei C Y 2018 Acta Phys. Sin. 67 140305Google Scholar

    [11]

    卫容宇, 聂敏, 杨光, 张美玲, 孙爱晶, 裴昌幸 2019 物理学报 68 140302Google Scholar

    Wei R Y, Nie M, Yang G, Zhang M L, Sun A J, Pei C X 2019 Acta Phys. Sin. 68 140302Google Scholar

    [12]

    Tian P F, Cao X J, Zhang L, Wang H B, Shi J S, Huang Z W, Zhou T, Liu H 2015 Atmos. Environ. 117 212Google Scholar

    [13]

    Dumka U C, Ningombam S S, Kaskaoutis D G, Madhavan B L, Song H J, Angchuk D, Jorphail S 2020 Sci. Total Environ. 734 139354Google Scholar

    [14]

    鲁先洋 2017 博士学位论文 (合肥: 中国科学技术大学)

    Lu X Y 2017 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [15]

    耿蒙 2017 硕士学位论文 (合肥: 中国科学技术大学)

    Geng M 2017 M.S. Thesis (Hefei: University of Science and Technology of China) (in Chinese)

    [16]

    王菲菲, 李学彬, 郑显明, 张文忠, 罗涛, 朱文越, 成巍, 邓志武 2019 红外与激光工程 48 89Google Scholar

    Wang F F, Li X B, Zheng X M, Zhang W Z, Luo T, Zhu W Y, Cheng W, Deng Z W 2019 Infrared Laser Eng. 48 89Google Scholar

    [17]

    张秀再, 徐茜, 刘邦宇 2020 光学学报 40 165

    Zhang X Z, Xu Q, Liu B Y 2020 Acta Optica Sin. 40 165

    [18]

    聂敏, 常乐, 杨光, 张美玲, 裴昌幸 2017 光子学报 46 16Google Scholar

    Nie M, Chang L, Yang G, Zhang M L, Pei C X 2017 Acta Phtonica Sin. 46 16Google Scholar

    [19]

    张登玉 2013 量子逻辑门与量子退相干 (北京: 科学出版社) 第90−110页

    Zhang D Y 2013 Quantum Logic Gates and Quantum Decoherence (Beijing: Science Press) pp90−110 (in Chinese)

    [20]

    尹浩, 马怀新 2006 军事量子通信概论(北京: 军事科学出版社) 第224−228页

    Yin H, Ma H X 2006 Introduction to Quantum Communication in Military (Beijing: Military Science Press) pp224−228 (in Chinese)

    [21]

    尹浩, 韩阳 2013 量子通信原理与技术(北京: 电子工业出版社) 第76−83页

    Yin H, Han Y 2013 Quantum Communication Theory and Technology (Beijing: Publishing House of Electronics Industry) pp76−83 (in Chinese)

    [22]

    尼尔森, 庄著(郑大钟, 赵千川译)2005 量子计算和量子信息(二) (北京: 清华大学出版社)第57−60页

    Nielsen A, Chuang I (translated by Zheng D Z, Zhao Q C) 2005 Quantum Computation and Quantum Information (Vol.2) (Beijing: TsingHua University Press) pp57−60 (in Chinese)

  • [1] 龚黎华, 陈振泳, 徐良超, 周南润. 基于高维单粒子态的双向半量子安全直接通信协议. 物理学报, 2022, 71(13): 130304. doi: 10.7498/aps.71.20211702
    [2] 董曜, 纪爱玲, 张国锋. 关联退极化量子信道中qutrit-qutrit系统的量子相干性演化. 物理学报, 2022, 71(7): 070303. doi: 10.7498/aps.71.20212067
    [3] 卫容宇, 聂敏, 杨光, 张美玲, 孙爱晶, 裴昌幸. 基于软件定义量子通信的自由空间量子通信信道参数自适应调整策略. 物理学报, 2019, 68(14): 140302. doi: 10.7498/aps.68.20190462
    [4] 郑晓桐, 郭立新, 程明建, 李江挺. 基于重复编码的海上可见光通信大气信道建模. 物理学报, 2018, 67(21): 214206. doi: 10.7498/aps.67.20181112
    [5] 郑晓毅, 龙银香. 基于cluster态的信道容量可控的可控量子安全直接通信方案. 物理学报, 2017, 66(18): 180303. doi: 10.7498/aps.66.180303
    [6] 聂敏, 唐守荣, 杨光, 张美玲, 裴昌幸. 中纬度地区电离层偶发E层对量子卫星通信性能的影响. 物理学报, 2017, 66(7): 070302. doi: 10.7498/aps.66.070302
    [7] 曹正文, 赵光, 张爽浩, 冯晓毅, 彭进业. 基于Bell态粒子和单光子混合的量子安全直接通信方案. 物理学报, 2016, 65(23): 230301. doi: 10.7498/aps.65.230301
    [8] 张永燕, 吴九汇, 曾涛, 钟宏民. 利用激光光梯度力消除气溶胶雾霾粒子的机理研究. 物理学报, 2016, 65(7): 074203. doi: 10.7498/aps.65.074203
    [9] 聂敏, 任家明, 杨光, 张美玲, 裴昌幸. 非球形气溶胶粒子及大气相对湿度对自由空间量子通信性能的影响. 物理学报, 2016, 65(19): 190301. doi: 10.7498/aps.65.190301
    [10] 陈鹏, 蔡有勋, 蔡晓菲, 施丽慧, 余旭涛. 基于纠缠态的量子通信网络的量子信道建立速率模型. 物理学报, 2015, 64(4): 040301. doi: 10.7498/aps.64.040301
    [11] 张学海, 魏合理, 戴聪明, 曹亚楠, 李学彬. 取向比对椭球气溶胶粒子散射特性的影响. 物理学报, 2015, 64(22): 224205. doi: 10.7498/aps.64.224205
    [12] 聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸. 中尺度沙尘暴对量子卫星通信信道的影响及性能仿真. 物理学报, 2014, 63(24): 240303. doi: 10.7498/aps.63.240303
    [13] 范萌, 陈良富, 李莘莘, 陶金花, 苏林, 邹铭敏, 张莹, 韩冬. 非球形气溶胶粒子短波红外散射特性研究. 物理学报, 2012, 61(20): 204202. doi: 10.7498/aps.61.204202
    [14] 刘玉玲, 满忠晓, 夏云杰. 用非最大纠缠信道对任意二粒子纠缠态的量子秘密分享. 物理学报, 2008, 57(5): 2680-2686. doi: 10.7498/aps.57.2680
    [15] 左浩毅, 杨经国. 基于气溶胶光学厚度反演大气气溶胶尺度分布. 物理学报, 2007, 56(10): 6132-6136. doi: 10.7498/aps.56.6132
    [16] 司福祺, 刘建国, 谢品华, 张玉钧, 窦 科, 刘文清. 差分吸收光谱技术监测大气气溶胶粒谱分布. 物理学报, 2006, 55(6): 3165-3169. doi: 10.7498/aps.55.3165
    [17] 夏柱红, 方黎, 郑海洋, 胡睿, 张玉莹, 孔祥和, 顾学军, 朱元, 张为俊, 鲍健, 熊鲁源. 气溶胶单粒子粒径的实时测量方法研究. 物理学报, 2004, 53(1): 320-324. doi: 10.7498/aps.53.320
    [18] 张兴元, 陈王丽华, 蔡忠龙. VDF/TrFE铁电共聚物极化分布与退极化过程的激光强度调制方法研究. 物理学报, 1999, 48(9): 1760-1766. doi: 10.7498/aps.48.1760
    [19] 吴全德. 离子晶体中固溶胶粒的形成和生长以及施主原子浓度(Ⅱ). 物理学报, 1966, 22(1): 17-28. doi: 10.7498/aps.22.17
    [20] 吴全德. 离子晶体中固溶胶粒的形成和生长以及施主原子浓度(Ⅰ). 物理学报, 1966, 22(1): 1-16. doi: 10.7498/aps.22.1
计量
  • 文章访问数:  4565
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-09
  • 修回日期:  2020-10-10
  • 上网日期:  2021-02-02
  • 刊出日期:  2021-02-20

/

返回文章
返回