-
本文采用尺寸选择的负离子光电子能谱技术, 结合密度泛函理论, 对
${\rm{Ta}}_4{\rm{C}}_n^{-/0} $ (n = 0—4)团簇电子结构、成键性质以及稳定性进行了研究. 实验测得${\rm{Ta}}_4{\rm{C}}_n^{-} $ (n = 0—4)团簇负离子基态结构的垂直脱附能分别为(1.16 ± 0.08), (1.35 ± 0.08), (1.51 ± 0.08), (1.30 ± 0.08)和(1.86 ± 0.08) eV. 中性Ta4Cn (n = 0—4)团簇的电子亲和能分别为(1.10 ± 0.08), (1.31 ± 0.08), (1.44 ± 0.08), (1.21 ± 0.08)和(1.80 ± 0.08) eV. 研究发现,${\rm{Ta}}_4^{-/0} $ 团簇为四面体结构,${\rm{Ta}}_4{\rm{C}}_1^{-/0} $ 团簇中碳原子覆盖在Ta4四面体的一个面上方,${\rm{Ta}}_4{\rm{C}}_2^{-/0} $ 团簇则是两个碳原子分别覆盖在Ta4四面体中的两个面上方.${\rm{Ta}}_4{\rm{C}}_3^{-/0} $ 团簇是一个缺角立方体结构.${\rm{Ta}}_4{\rm{C}}_4^{-/0} $ 团簇则是近似立方体结构, 可以看成是α-TaC面心立方晶体的最小晶胞单元. 分子轨道分析结果显示${\rm{Ta}}_4{\rm{C}}_3^{-} $ 团簇的单电子最高占据轨道主要布居在单个钽原子周围, 导致${\rm{Ta}}_4{\rm{C}}_3^{-} $ 团簇的垂直脱附能明显低于其相邻团簇. 理论研究显示随着碳原子数目的增加,${\rm{Ta}}_4{\rm{C}}_n^{-/0} $ (n = 0—4)团簇中的钽-钽金属键逐渐被钽-碳共价键取代, 单原子结合能逐渐增加且明显高于${\rm{Ta}}_{4+n}^{-/0} $ (n = 0—4)团簇. 中性Ta4C4的单原子结合能高达7.13 eV, 这说明钽-碳共价键的形成有利于提高材料的熔点, 这与碳化钽作为高温陶瓷材料的特性密切相关.-
关键词:
- 光电子能谱 /
- 密度泛函 /
- ${\rm{Ta}}_4{\rm{C}}_n^{-/0} $团簇
The electronic structures, chemical bonds and stabilities of${\rm{Ta}}_4{\rm{C}}_n^{-/0} $ (n = 0–4) clusters are investigated by combining anion photoelectron spectroscopy with theoretical calculations. The vertical detachment energy values of${\rm{Ta}}_4{\rm{C}}_n^{-} $ (n = 0–4) anions are measured to be (1.16 ± 0.08), (1.35 ± 0.08), (1.51 ± 0.08), (1.30 ± 0.08), and (1.86 ± 0.08) eV, and the electron affinities of neutral Ta4Cn (n = 0–4) are estimated to be (1.10 ± 0.08), (1.31 ± 0.08), (1.44 ± 0.08), (1.21 ± 0.08), and (1.80 ± 0.08) eV, respectively. It is found that the geometry structure of${\rm{Ta}}_4^- $ cluster is a tetrahedron, and the most stable structure of${\rm{Ta}}_4{\rm{C}}_1^{-} $ has a carbon atom capping one face of the${\rm{Ta}}_4^- $ tetrahedron, while in the ground state structure of${\rm{Ta}}_4{\rm{C}}_2^{-} $ cluster, two carbon atoms cap two faces of the${\rm{Ta}}_4^- $ tetrahedron, respectively. The lowest-lying isomer of${\rm{Ta}}_4{\rm{C}}_3^{-} $ cluster holds a cube-cutting-angle structure. The ground state structure of${\rm{Ta}}_4{\rm{C}}_4^{-} $ is a 2 × 2 × 2 cube. The neutral Ta4Cn (n = 0–4) clusters have similar structures to their anionic counterparts and the neutral Ta4C4 cluster can be considered as the smallest cell for α-TaC face-centered cube crystal. The analyses of molecular orbitals reveal that the SOMO of${\rm{Ta}}_4{\rm{C}}_3^{-} $ is mainly localized on one tantalum atom, inducing a low VDE. Our results show that the Ta-Ta metal bonds are replaced by Ta-C covalent bonds gradually as the number of carbon atoms increases in${\rm{Ta}}_4{\rm{C}}_n^{-/0} $ (n = 0–4) clusters. The per-atom binding energy values of${\rm{Ta}}_4{\rm{C}}_n^{-/0} $ (n = 0–4) clusters are higher than those of${\rm{Ta}}_{4+n}^{-/0} $ (n = 0–4) clusters, indicating that the formation of Ta-C covalent bonds may raise the melting point. The per-atom binding energy of neutral Ta4C4 is about 7.13 eV, which is quite high, which may contribute to the high melting point of α-TaC as an ultra-high temperature ceramic material.-
Keywords:
- photoelectron spectroscopy /
- density functional theory /
- ${\rm{Ta}}_4{\rm{C}}_n^{-/0} $ clusters
[1] Kelly T G, Chen J G 2012 Chem. Soc. Rev. 41 8021Google Scholar
[2] Gao P, Wang Y, Yang S Q, Chen Y J, Xue Z, Wang L Q, Li G B, Sun Y Z 2012 Int. J. Hydrogen Energy 37 17126Google Scholar
[3] Li Z Y, Hu L, Liu Q Y, Ning C G, Chen H, He S G, Yao J 2015 Chem. Eur. J. 21 17748Google Scholar
[4] Li H F, Li Z Y, Liu Q Y, Li X N, Zhao Y X, He S G 2015 J. Phys. Chem. Lett. 6 2287
[5] Jiang J, Wang S, Li W, Klein L 2016 J. Am. Ceram. Soc. 99 3198Google Scholar
[6] Zhong Y, Xia X H, Shi F, Zhan J Y, Tu J P, Fan H J 2016 Adv. Sci. 3 1500286Google Scholar
[7] Shahzad F, Aihabeb M, Hatter C B, Anasori B, Hong S M, Koo C M, Gogotsi Y 2016 Science 353 1137Google Scholar
[8] Chai Y, Guo T, Jin C M, Haufler R E, Chibante L P F, Fure J, Wang L H, Alford J M, Smalley R E 1991 J. Phys. Chem. 95 7564
[9] Guo B C, Kerns K I, Castleman A W 1992 Science 255 1411Google Scholar
[10] Guo B C, Wei S, Purnell J, Buzza S, Castleman A W Jr 1992 Science 256 515Google Scholar
[11] Reddy B V, Khanna S N, Jena P 1992 Science 258 1640Google Scholar
[12] Pilgrim J S, Duncan M A 1993 J. Am. Chem. Soc. 115 6958
[13] Pilgrim J S, Duncan M A 1993 J. Am. Chem. Soc. 115 9724
[14] Pilgrim J S, Duncan M A 1993 J. Am. Chem. Soc. 115 4395
[15] Clemmer D E, Shelimov K B, Jarrold M F 1994 Nature 367 718
[16] Clemmer D E, Hunter J M, Shelimov K B, Jarrold M F 1994 Nature 372 248Google Scholar
[17] Wang L S, Li S, Wu H 1996 J. Phys. Chem. 100 19211
[18] Li S, Wu H, Wang L S 1997 J. Am. Chem. Soc. 119 7417
[19] Li X, Wang L S 1999 J. Chem. Phys. 111 8389Google Scholar
[20] Wang L S, Li X 2000 J. Chem. Phys. 112 3602
[21] Wang L S, Cheng H S 1997 Phys. Rev. Lett. 78 2983
[22] Wang X B, Ding C F, Wang L S 1997 J. Phys. Chem. A 101 7699Google Scholar
[23] Zhai H J, Wang L S, Jena P, Gutsev G L, Bauschlicher C W 2004 J. Chem. Phys. 120 8996Google Scholar
[24] Fan J W, Lou L, Wang L S 1995 J. Chem. Phys. 102 2701Google Scholar
[25] Ticknor B W, Bandyopadhyay B, Duncan M A 2008 J. Phys. Chem. A 112 12355
[26] León I, Ruipérez F, Ugalde J M, Wang L S 2016 J. Chem. Phys. 145 064304Google Scholar
[27] Xu X L, Yang B, Zhang C J, Xu H G, Zheng W J 2019 J. Chem. Phys. 150 074304Google Scholar
[28] Redondo P, Barrientos C, Largo A 2005 J. Phys. Chem. A 109 8594Google Scholar
[29] Redondo P, Barrientos C, Largo A 2006 J. Phys. Chem. A 110 4057
[30] Redondo P, Barrientos C, Largo A 2006 J. Chem. Theory Comput. 2 885Google Scholar
[31] Redondo P, Barrientos C, Largo A 2006 J. Mol. Struct. 769 225Google Scholar
[32] Barrientos C, Redondo P, Largo A 2007 J. Chem. Theory Comput. 3 657Google Scholar
[33] Largo L, Cimas Á, Redondo P, Rayón V M, Barrientos C 2007 Int. J. Mass Spectrom. 266 50Google Scholar
[34] Redondo P, Barrientos C, Largo A 2008 Int. J. Quantum Chem. 108 1684Google Scholar
[35] Redondo P, Barrientos C, Largo A 2008 Int. J. Mass Spectrom. 272 187Google Scholar
[36] Largo L, Barrientos C, Redondo P 2009 J. Chem. Phys. 130 134304Google Scholar
[37] Redondo P, Largo L, Barrientos C 2009 Chem. Phys. 364 1Google Scholar
[38] Yuan J Y, Xu H G, Zheng W J 2014 Phys. Chem. Chem. Phys. 16 5434Google Scholar
[39] Yuan J Y, Wang P, Hou G L, Feng G, Zhang W J, Xu X L, Xu H G, Yang J L, Zheng W J 2016 J. Phys. Chem. A 120 1520
[40] Xu X L, Yuan J Y, Yang B, Xu H G, Zheng W J 2017 Chin. J. Chem. Phys. 30 717Google Scholar
[41] Wang L S, Wang X B, Wu H, Cheng H 1998 J. Am. Chem. Soc. 120 6556Google Scholar
[42] Strout D L, Hall M B 1996 J. Phys. Chem. 100 18007Google Scholar
[43] Strout D L, Hall M B 1998 J. Phys. Chem. A 102 641
[44] Strout D L, Miller III T F, Hall M B 1998 J. Phys. Chem. A 102 6307Google Scholar
[45] Roszak S, Balasubramanian K 1998 J. Phys. Chem. A 102 6004Google Scholar
[46] Li X, Liu S S, Chen W, Wang L S 1999 J. Chem. Phys. 111 2464Google Scholar
[47] Dai D, Roszak S, Balasubramanian K 2000 J. Phys. Chem. A 104 9760Google Scholar
[48] Dai D G, Balasubramanian K 2000 J. Phys. Chem. A 104 1325Google Scholar
[49] Zhai H J, Liu S R, Li X, Wang L S 2001 J. Chem. Phys. 115 5170
[50] Knappenberger K L, Clayborne P A, Reveles J U, Sobhy M A, Jones C E, Gupta U U, Khanna S N, Iordanov I, Sofo J, Castleman A W 2007 ACS Nano 1 319
[51] Fukushima N, Miyajima K, Mafune F 2009 J. Phys. Chem. A 113 2309Google Scholar
[52] Zhang Q, Song L, Lu X, Huang R b, Zheng L S 2010 J. Mol. Struct. 967 153Google Scholar
[53] Harding D J, Kerpal C, Meijer G, Fielicke A 2013 J. Phys. Chem. Lett. 4 892Google Scholar
[54] León I, Yang Z, Wang L S 2014 J. Chem. Phys. 140 084303Google Scholar
[55] León I, Ruiperez F, Ugalde J M, Wang L S 2018 J. Chem. Phys. 149 144307Google Scholar
[56] Wang P, Zhang W, Xu X L, Yuan J, Xu H G, Zheng W 2017 J. Chem. Phys. 146 194303Google Scholar
[57] Lu S J 2018 Chem. Phys. Lett. 699 218Google Scholar
[58] Lu S J 2018 Chem. Phys. Lett. 694 70Google Scholar
[59] Heaven M W, Stewart G M, Buntine M A, Meth G F 2000 J. Phys. Chem. A 104 3308Google Scholar
[60] van Heijnsbergen D, Fielicke A, Meijer G, von Helden G 2002 Phys. Rev. Lett. 89 013401Google Scholar
[61] Dryza V, Addicoat M A, Gascooke J R, Buntine M A, Metha G F 2005 J. Phys. Chem. A 109 11180
[62] Dryza V, Alvino J F, Metha G F 2010 J. Phys. Chem. A 114 4080
[63] Aravind G, Nrisimhamurty M, Mane R G, Gupta A K, Krishnakumar E 2015 Phys. Rev. A 92 042503Google Scholar
[64] Li H F, Zhao Y X, Yuan Z, Liu Q Y, Li Z Y, Li X N, Ning C G, He S G 2017 J. Phys. Chem. Lett. 8 605Google Scholar
[65] Mou L H, Liu Q Y, Zhang T, Li Z Y, He S G 2018 J. Phys. Chem. A 122 3489Google Scholar
[66] Li Z Y, Mou L H, Wei G P, Ren Y, Zhang M Q, Liu Q Y, He S G 2019 Inorg. Chem. 58 4701Google Scholar
[67] Chernyy V, Logemann R, Kirilyuk A, Bakker J M 2018 ChemPhysChem 19 1424Google Scholar
[68] Savino R, Fumoa M D S, Paterna D, Di Masoa A, Monteverde F 2010 Aerosp. Sci. Technol. 14 178Google Scholar
[69] Graeve O A, Munir Z A 2011 J. Mater. Res. 17 609
[70] Fukunaga A, Chu S, McHenry M E 2011 J. Mater. Res. 13 2465
[71] Tuleushev Y Z, Volodin V N, Zhakanbaev E A, Alimzhan B 2016 Phys. Met. Metall. 117 789Google Scholar
[72] Mehdikhan B, Borhani G H, Bakhshi S R, Baharvandi H R 2017 Refract. Ind. Ceram. 57 507Google Scholar
[73] Xu H G, Zhang Z G, Feng Y, Zheng W 2010 Chem. Phys. Lett. 498 22Google Scholar
[74] Lü J, Wang Y, Zhu L, Ma Y 2012 J. Chem. Phys. 137 084104Google Scholar
[75] Frisch M J, Trucks G W, Schlegel H B, et al. 2016 GAUSSIAN 09 (Revision Ed. 01) (Wallingford, CT: Gaussian, Inc.)
[76] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[77] Pritchard B P, Altarawy D, Didier B, Gibson T D, Windus T L 2019 J. Chem. Inf. Model. 59 4814Google Scholar
[78] Glendening E D, Badenhoop J K, Reed A E, Carpenter J E, Bohmann J A, Morales C M, Landis C R, Weinhold F NBO 6.0 (http://nbo6.chem.wisc.edu/)
[79] Tozer D J, Handy N C 1998 J. Chem. Phys. 109 10180Google Scholar
[80] Akola J, Manninen M, Häkkinen H, Landman U, Li X, Wang L S 1999 Phys. Rev. B 60 R11297Google Scholar
[81] Lu T, Chen F 2012 J. Comput. Chem. 33 580Google Scholar
[82] Reed A E, Weinstock R B, Weinhold F 1985 J. Chem. Phys. 83 735
[83] Fielicke A, Gruene P, Haertelt M, Harding D J, Meijer G 2010 J. Phys. Chem. A 114 9755Google Scholar
[84] Shabalin I L 2014 Ultra-HighTemperatureMaterials (1st Ed.) (Dordrecht: Springer Netherlands) p389
-
图 2
${\rm{Ta}}_4{\rm{C}}_n^{-} $ (n = 0—4)团簇负离子的低能量异构体. 相对能量是在PBEPBE/aug-cc-pVTZ/C/aug-cc-pVTZ-PP/Ta水平获得. 其中红色球代表碳原子, 青色球代表钽原子Fig. 2. Low-lying isomers of
${\rm{Ta}}_4{\rm{C}}_n^{-} $ (n = 0–4) cluster anions. The relative energies are calculated at the PBEPBE/aug-cc-pVTZ/C/aug-cc-pVTZ-PP/Ta level. Cyan and red balls stand for the tantalum and carbon atoms, respectively.图 3
${\rm{Ta}}_4{\rm{C}}_n^{-} $ (n = 0—4)团簇负离子的模拟光电子能谱(DOS)与实验光电子能谱对比, 竖线表示理论计算所对应的分子能级Fig. 3. Comparisons of the experimental photoelectron spectra of
${\rm{Ta}}_4{\rm{C}}_n^{-} $ (n = 0–4) with their simulated density of states (DOS) spectra. The vertical lines are the theoretically simulated spectral lines.图 7
${\rm{Ta}}_4{\rm{C}}_n^{-/0} $ (n = 0—4)团簇的NPA电荷(Q, |e|, 红色数值)和Wiberg键级(紫色数值), 括号中为中性团簇相对应数值Fig. 7. NPA charges (Q, in |e|, red values) and Wiberg bond indices (WBIs, purple values) of the most stable structures of
${\rm{Ta}}_4{\rm{C}}_n^{-/0} $ (n = 0–4) clusters. The values in parentheses are from the neutral clusters.表 1
${\rm{Ta}}_4{\rm{C}}_n^{-} $ (n = 0—4)团簇负离子的低能量异构体的相对能量(∆E), 理论VDEs/ADEs以及实验VDEs/ADEsTable 1. Relative energies (∆E ), theoretical VDEs and ADEs of the low-lying isomers for
${\rm{Ta}}_4{\rm{C}}_n^{-} $ (n = 0–4) cluster anions, as well as the experimental VDEs and ADEs estimated from their photoelectron spectra.异构体 电子态 对称点群 ∆E/eV VDE/eV ADE/eV 理论值 实验值 理论值 实验值 ${\rm{Ta}}_4^{-} $ 0A C2 2B 0 0.94 1.16 0.92 1.10 0B C1 4A 0.30 1.32 1.16 0C D2h 2B2u 0.92 1.59 1.39 ${\rm{Ta}}_4{\rm{C}}_1^{-} $ 1A Cs 2A'' 0 1.23 1.35 1.22 1.31 1B C2v 2B2 0.27 1.07 1.03 1C C2v 2B2 0.46 1.18 0.76 ${\rm{Ta}}_4{\rm{C}}_2^{-} $ 2A Cs 2A'' 0 1.49 1.51 1.34 1.44 2B Cs 2A'' 0.29 1.22 1.18 2C Cs 4A'' 0.30 1.05 1.04 ${\rm{Ta}}_4{\rm{C}}_3^{-} $ 3A C3v 2A1 0 1.17 1.30 1.13 1.21 3B Cs 6A'' 1.03 1.66 1.65 3C C2v 2A1 1.41 1.35 1.29 ${\rm{Ta}}_4{\rm{C}}_4^{-} $ 4A D2d 4B2 0 1.70 1.86 1.69 1.80 4B C1 2A 0.09 1.61 1.39 1.60 1.35 4C D2d 6A2 0.21 1.75 1.74 表 2
${\rm{Ta}}_{4+n}^{-/0} $ 和${\rm{Ta}}_4{\rm{C}}_n^{-/0} $ (n = 0—4)团簇的单原子结合能(Eb)Table 2. Binding energies per-atom (Eb) of
${\rm{Ta}}_{4+n}^{-/0} $ and${\rm{Ta}}_4{\rm{C}}_n^{-/0} $ (n = 0–4) clusters.n Eb ${\rm{Ta}}_4{\rm{C}}_n^{-} $ ${\rm{Ta}}_{4+n}^{-} $ Ta4Cn Ta4+n 0 4.40 4.40 4.35 4.35 1 5.10 4.78 5.43 4.65 2 5.90 4.99 6.16 4.93 3 6.56 5.30 6.81 5.22 4 6.98 5.44 7.13 5.37 -
[1] Kelly T G, Chen J G 2012 Chem. Soc. Rev. 41 8021Google Scholar
[2] Gao P, Wang Y, Yang S Q, Chen Y J, Xue Z, Wang L Q, Li G B, Sun Y Z 2012 Int. J. Hydrogen Energy 37 17126Google Scholar
[3] Li Z Y, Hu L, Liu Q Y, Ning C G, Chen H, He S G, Yao J 2015 Chem. Eur. J. 21 17748Google Scholar
[4] Li H F, Li Z Y, Liu Q Y, Li X N, Zhao Y X, He S G 2015 J. Phys. Chem. Lett. 6 2287
[5] Jiang J, Wang S, Li W, Klein L 2016 J. Am. Ceram. Soc. 99 3198Google Scholar
[6] Zhong Y, Xia X H, Shi F, Zhan J Y, Tu J P, Fan H J 2016 Adv. Sci. 3 1500286Google Scholar
[7] Shahzad F, Aihabeb M, Hatter C B, Anasori B, Hong S M, Koo C M, Gogotsi Y 2016 Science 353 1137Google Scholar
[8] Chai Y, Guo T, Jin C M, Haufler R E, Chibante L P F, Fure J, Wang L H, Alford J M, Smalley R E 1991 J. Phys. Chem. 95 7564
[9] Guo B C, Kerns K I, Castleman A W 1992 Science 255 1411Google Scholar
[10] Guo B C, Wei S, Purnell J, Buzza S, Castleman A W Jr 1992 Science 256 515Google Scholar
[11] Reddy B V, Khanna S N, Jena P 1992 Science 258 1640Google Scholar
[12] Pilgrim J S, Duncan M A 1993 J. Am. Chem. Soc. 115 6958
[13] Pilgrim J S, Duncan M A 1993 J. Am. Chem. Soc. 115 9724
[14] Pilgrim J S, Duncan M A 1993 J. Am. Chem. Soc. 115 4395
[15] Clemmer D E, Shelimov K B, Jarrold M F 1994 Nature 367 718
[16] Clemmer D E, Hunter J M, Shelimov K B, Jarrold M F 1994 Nature 372 248Google Scholar
[17] Wang L S, Li S, Wu H 1996 J. Phys. Chem. 100 19211
[18] Li S, Wu H, Wang L S 1997 J. Am. Chem. Soc. 119 7417
[19] Li X, Wang L S 1999 J. Chem. Phys. 111 8389Google Scholar
[20] Wang L S, Li X 2000 J. Chem. Phys. 112 3602
[21] Wang L S, Cheng H S 1997 Phys. Rev. Lett. 78 2983
[22] Wang X B, Ding C F, Wang L S 1997 J. Phys. Chem. A 101 7699Google Scholar
[23] Zhai H J, Wang L S, Jena P, Gutsev G L, Bauschlicher C W 2004 J. Chem. Phys. 120 8996Google Scholar
[24] Fan J W, Lou L, Wang L S 1995 J. Chem. Phys. 102 2701Google Scholar
[25] Ticknor B W, Bandyopadhyay B, Duncan M A 2008 J. Phys. Chem. A 112 12355
[26] León I, Ruipérez F, Ugalde J M, Wang L S 2016 J. Chem. Phys. 145 064304Google Scholar
[27] Xu X L, Yang B, Zhang C J, Xu H G, Zheng W J 2019 J. Chem. Phys. 150 074304Google Scholar
[28] Redondo P, Barrientos C, Largo A 2005 J. Phys. Chem. A 109 8594Google Scholar
[29] Redondo P, Barrientos C, Largo A 2006 J. Phys. Chem. A 110 4057
[30] Redondo P, Barrientos C, Largo A 2006 J. Chem. Theory Comput. 2 885Google Scholar
[31] Redondo P, Barrientos C, Largo A 2006 J. Mol. Struct. 769 225Google Scholar
[32] Barrientos C, Redondo P, Largo A 2007 J. Chem. Theory Comput. 3 657Google Scholar
[33] Largo L, Cimas Á, Redondo P, Rayón V M, Barrientos C 2007 Int. J. Mass Spectrom. 266 50Google Scholar
[34] Redondo P, Barrientos C, Largo A 2008 Int. J. Quantum Chem. 108 1684Google Scholar
[35] Redondo P, Barrientos C, Largo A 2008 Int. J. Mass Spectrom. 272 187Google Scholar
[36] Largo L, Barrientos C, Redondo P 2009 J. Chem. Phys. 130 134304Google Scholar
[37] Redondo P, Largo L, Barrientos C 2009 Chem. Phys. 364 1Google Scholar
[38] Yuan J Y, Xu H G, Zheng W J 2014 Phys. Chem. Chem. Phys. 16 5434Google Scholar
[39] Yuan J Y, Wang P, Hou G L, Feng G, Zhang W J, Xu X L, Xu H G, Yang J L, Zheng W J 2016 J. Phys. Chem. A 120 1520
[40] Xu X L, Yuan J Y, Yang B, Xu H G, Zheng W J 2017 Chin. J. Chem. Phys. 30 717Google Scholar
[41] Wang L S, Wang X B, Wu H, Cheng H 1998 J. Am. Chem. Soc. 120 6556Google Scholar
[42] Strout D L, Hall M B 1996 J. Phys. Chem. 100 18007Google Scholar
[43] Strout D L, Hall M B 1998 J. Phys. Chem. A 102 641
[44] Strout D L, Miller III T F, Hall M B 1998 J. Phys. Chem. A 102 6307Google Scholar
[45] Roszak S, Balasubramanian K 1998 J. Phys. Chem. A 102 6004Google Scholar
[46] Li X, Liu S S, Chen W, Wang L S 1999 J. Chem. Phys. 111 2464Google Scholar
[47] Dai D, Roszak S, Balasubramanian K 2000 J. Phys. Chem. A 104 9760Google Scholar
[48] Dai D G, Balasubramanian K 2000 J. Phys. Chem. A 104 1325Google Scholar
[49] Zhai H J, Liu S R, Li X, Wang L S 2001 J. Chem. Phys. 115 5170
[50] Knappenberger K L, Clayborne P A, Reveles J U, Sobhy M A, Jones C E, Gupta U U, Khanna S N, Iordanov I, Sofo J, Castleman A W 2007 ACS Nano 1 319
[51] Fukushima N, Miyajima K, Mafune F 2009 J. Phys. Chem. A 113 2309Google Scholar
[52] Zhang Q, Song L, Lu X, Huang R b, Zheng L S 2010 J. Mol. Struct. 967 153Google Scholar
[53] Harding D J, Kerpal C, Meijer G, Fielicke A 2013 J. Phys. Chem. Lett. 4 892Google Scholar
[54] León I, Yang Z, Wang L S 2014 J. Chem. Phys. 140 084303Google Scholar
[55] León I, Ruiperez F, Ugalde J M, Wang L S 2018 J. Chem. Phys. 149 144307Google Scholar
[56] Wang P, Zhang W, Xu X L, Yuan J, Xu H G, Zheng W 2017 J. Chem. Phys. 146 194303Google Scholar
[57] Lu S J 2018 Chem. Phys. Lett. 699 218Google Scholar
[58] Lu S J 2018 Chem. Phys. Lett. 694 70Google Scholar
[59] Heaven M W, Stewart G M, Buntine M A, Meth G F 2000 J. Phys. Chem. A 104 3308Google Scholar
[60] van Heijnsbergen D, Fielicke A, Meijer G, von Helden G 2002 Phys. Rev. Lett. 89 013401Google Scholar
[61] Dryza V, Addicoat M A, Gascooke J R, Buntine M A, Metha G F 2005 J. Phys. Chem. A 109 11180
[62] Dryza V, Alvino J F, Metha G F 2010 J. Phys. Chem. A 114 4080
[63] Aravind G, Nrisimhamurty M, Mane R G, Gupta A K, Krishnakumar E 2015 Phys. Rev. A 92 042503Google Scholar
[64] Li H F, Zhao Y X, Yuan Z, Liu Q Y, Li Z Y, Li X N, Ning C G, He S G 2017 J. Phys. Chem. Lett. 8 605Google Scholar
[65] Mou L H, Liu Q Y, Zhang T, Li Z Y, He S G 2018 J. Phys. Chem. A 122 3489Google Scholar
[66] Li Z Y, Mou L H, Wei G P, Ren Y, Zhang M Q, Liu Q Y, He S G 2019 Inorg. Chem. 58 4701Google Scholar
[67] Chernyy V, Logemann R, Kirilyuk A, Bakker J M 2018 ChemPhysChem 19 1424Google Scholar
[68] Savino R, Fumoa M D S, Paterna D, Di Masoa A, Monteverde F 2010 Aerosp. Sci. Technol. 14 178Google Scholar
[69] Graeve O A, Munir Z A 2011 J. Mater. Res. 17 609
[70] Fukunaga A, Chu S, McHenry M E 2011 J. Mater. Res. 13 2465
[71] Tuleushev Y Z, Volodin V N, Zhakanbaev E A, Alimzhan B 2016 Phys. Met. Metall. 117 789Google Scholar
[72] Mehdikhan B, Borhani G H, Bakhshi S R, Baharvandi H R 2017 Refract. Ind. Ceram. 57 507Google Scholar
[73] Xu H G, Zhang Z G, Feng Y, Zheng W 2010 Chem. Phys. Lett. 498 22Google Scholar
[74] Lü J, Wang Y, Zhu L, Ma Y 2012 J. Chem. Phys. 137 084104Google Scholar
[75] Frisch M J, Trucks G W, Schlegel H B, et al. 2016 GAUSSIAN 09 (Revision Ed. 01) (Wallingford, CT: Gaussian, Inc.)
[76] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[77] Pritchard B P, Altarawy D, Didier B, Gibson T D, Windus T L 2019 J. Chem. Inf. Model. 59 4814Google Scholar
[78] Glendening E D, Badenhoop J K, Reed A E, Carpenter J E, Bohmann J A, Morales C M, Landis C R, Weinhold F NBO 6.0 (http://nbo6.chem.wisc.edu/)
[79] Tozer D J, Handy N C 1998 J. Chem. Phys. 109 10180Google Scholar
[80] Akola J, Manninen M, Häkkinen H, Landman U, Li X, Wang L S 1999 Phys. Rev. B 60 R11297Google Scholar
[81] Lu T, Chen F 2012 J. Comput. Chem. 33 580Google Scholar
[82] Reed A E, Weinstock R B, Weinhold F 1985 J. Chem. Phys. 83 735
[83] Fielicke A, Gruene P, Haertelt M, Harding D J, Meijer G 2010 J. Phys. Chem. A 114 9755Google Scholar
[84] Shabalin I L 2014 Ultra-HighTemperatureMaterials (1st Ed.) (Dordrecht: Springer Netherlands) p389
计量
- 文章访问数: 6585
- PDF下载量: 207
- 被引次数: 0