搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

${\bf Ta_4C}_{ n}^{\bf -/0}$ (n = 0—4)团簇的电子结构、成键性质及稳定性

张超江 许洪光 徐西玲 郑卫军

引用本文:
Citation:

${\bf Ta_4C}_{ n}^{\bf -/0}$ (n = 0—4)团簇的电子结构、成键性质及稳定性

张超江, 许洪光, 徐西玲, 郑卫军

Electronic structures, chemical bonds, and stabilities of ${\rm{Ta}}_4{\rm{C}}_n^{-/0} $ (n = 0–4) clusters: Anion photoelectron spectroscopy and theoretical calculations

Zhang Chao-Jiang, Xu Hong-Guang, Xu Xi-Ling, Zheng Wei-Jun
PDF
HTML
导出引用
  • 本文采用尺寸选择的负离子光电子能谱技术, 结合密度泛函理论, 对${\rm{Ta}}_4{\rm{C}}_n^{-/0} $ (n = 0—4)团簇电子结构、成键性质以及稳定性进行了研究. 实验测得${\rm{Ta}}_4{\rm{C}}_n^{-} $ (n = 0—4)团簇负离子基态结构的垂直脱附能分别为(1.16 ± 0.08), (1.35 ± 0.08), (1.51 ± 0.08), (1.30 ± 0.08)和(1.86 ± 0.08) eV. 中性Ta4Cn (n = 0—4)团簇的电子亲和能分别为(1.10 ± 0.08), (1.31 ± 0.08), (1.44 ± 0.08), (1.21 ± 0.08)和(1.80 ± 0.08) eV. 研究发现, ${\rm{Ta}}_4^{-/0} $团簇为四面体结构, ${\rm{Ta}}_4{\rm{C}}_1^{-/0} $团簇中碳原子覆盖在Ta4四面体的一个面上方, ${\rm{Ta}}_4{\rm{C}}_2^{-/0} $团簇则是两个碳原子分别覆盖在Ta4四面体中的两个面上方. ${\rm{Ta}}_4{\rm{C}}_3^{-/0} $团簇是一个缺角立方体结构. ${\rm{Ta}}_4{\rm{C}}_4^{-/0} $团簇则是近似立方体结构, 可以看成是α-TaC面心立方晶体的最小晶胞单元. 分子轨道分析结果显示${\rm{Ta}}_4{\rm{C}}_3^{-} $团簇的单电子最高占据轨道主要布居在单个钽原子周围, 导致${\rm{Ta}}_4{\rm{C}}_3^{-} $团簇的垂直脱附能明显低于其相邻团簇. 理论研究显示随着碳原子数目的增加, ${\rm{Ta}}_4{\rm{C}}_n^{-/0} $ (n = 0—4)团簇中的钽-钽金属键逐渐被钽-碳共价键取代, 单原子结合能逐渐增加且明显高于${\rm{Ta}}_{4+n}^{-/0} $(n = 0—4)团簇. 中性Ta4C4的单原子结合能高达7.13 eV, 这说明钽-碳共价键的形成有利于提高材料的熔点, 这与碳化钽作为高温陶瓷材料的特性密切相关.
    The electronic structures, chemical bonds and stabilities of ${\rm{Ta}}_4{\rm{C}}_n^{-/0} $ (n = 0–4) clusters are investigated by combining anion photoelectron spectroscopy with theoretical calculations. The vertical detachment energy values of ${\rm{Ta}}_4{\rm{C}}_n^{-} $ (n = 0–4) anions are measured to be (1.16 ± 0.08), (1.35 ± 0.08), (1.51 ± 0.08), (1.30 ± 0.08), and (1.86 ± 0.08) eV, and the electron affinities of neutral Ta4Cn (n = 0–4) are estimated to be (1.10 ± 0.08), (1.31 ± 0.08), (1.44 ± 0.08), (1.21 ± 0.08), and (1.80 ± 0.08) eV, respectively. It is found that the geometry structure of ${\rm{Ta}}_4^- $cluster is a tetrahedron, and the most stable structure of ${\rm{Ta}}_4{\rm{C}}_1^{-} $ has a carbon atom capping one face of the ${\rm{Ta}}_4^- $ tetrahedron, while in the ground state structure of ${\rm{Ta}}_4{\rm{C}}_2^{-} $ cluster, two carbon atoms cap two faces of the${\rm{Ta}}_4^- $ tetrahedron, respectively. The lowest-lying isomer of ${\rm{Ta}}_4{\rm{C}}_3^{-} $ cluster holds a cube-cutting-angle structure. The ground state structure of ${\rm{Ta}}_4{\rm{C}}_4^{-} $ is a 2 × 2 × 2 cube. The neutral Ta4Cn (n = 0–4) clusters have similar structures to their anionic counterparts and the neutral Ta4C4 cluster can be considered as the smallest cell for α-TaC face-centered cube crystal. The analyses of molecular orbitals reveal that the SOMO of ${\rm{Ta}}_4{\rm{C}}_3^{-} $ is mainly localized on one tantalum atom, inducing a low VDE. Our results show that the Ta-Ta metal bonds are replaced by Ta-C covalent bonds gradually as the number of carbon atoms increases in ${\rm{Ta}}_4{\rm{C}}_n^{-/0} $ (n = 0–4) clusters. The per-atom binding energy values of ${\rm{Ta}}_4{\rm{C}}_n^{-/0} $ (n = 0–4) clusters are higher than those of ${\rm{Ta}}_{4+n}^{-/0} $ (n = 0–4) clusters, indicating that the formation of Ta-C covalent bonds may raise the melting point. The per-atom binding energy of neutral Ta4C4 is about 7.13 eV, which is quite high, which may contribute to the high melting point of α-TaC as an ultra-high temperature ceramic material.
      通信作者: 徐西玲, xlxu@iccas.ac.cn ; 郑卫军, zhengwj@iccas.ac.cn
    • 基金项目: 北京市科学技术委员会(批准号: Z191100007219009)和中国科学院(批准号: QYZDB-SSW-SLH024)资助的课题
      Corresponding author: Xu Xi-Ling, xlxu@iccas.ac.cn ; Zheng Wei-Jun, zhengwj@iccas.ac.cn
    • Funds: Project supported by the Beijing Municipal Science & Technology Commission, China (Grant No. Z191100007219009) and the Chinese Academy of Sciences (Grant No. QYZDB-SSW-SLH024)
    [1]

    Kelly T G, Chen J G 2012 Chem. Soc. Rev. 41 8021Google Scholar

    [2]

    Gao P, Wang Y, Yang S Q, Chen Y J, Xue Z, Wang L Q, Li G B, Sun Y Z 2012 Int. J. Hydrogen Energy 37 17126Google Scholar

    [3]

    Li Z Y, Hu L, Liu Q Y, Ning C G, Chen H, He S G, Yao J 2015 Chem. Eur. J. 21 17748Google Scholar

    [4]

    Li H F, Li Z Y, Liu Q Y, Li X N, Zhao Y X, He S G 2015 J. Phys. Chem. Lett. 6 2287

    [5]

    Jiang J, Wang S, Li W, Klein L 2016 J. Am. Ceram. Soc. 99 3198Google Scholar

    [6]

    Zhong Y, Xia X H, Shi F, Zhan J Y, Tu J P, Fan H J 2016 Adv. Sci. 3 1500286Google Scholar

    [7]

    Shahzad F, Aihabeb M, Hatter C B, Anasori B, Hong S M, Koo C M, Gogotsi Y 2016 Science 353 1137Google Scholar

    [8]

    Chai Y, Guo T, Jin C M, Haufler R E, Chibante L P F, Fure J, Wang L H, Alford J M, Smalley R E 1991 J. Phys. Chem. 95 7564

    [9]

    Guo B C, Kerns K I, Castleman A W 1992 Science 255 1411Google Scholar

    [10]

    Guo B C, Wei S, Purnell J, Buzza S, Castleman A W Jr 1992 Science 256 515Google Scholar

    [11]

    Reddy B V, Khanna S N, Jena P 1992 Science 258 1640Google Scholar

    [12]

    Pilgrim J S, Duncan M A 1993 J. Am. Chem. Soc. 115 6958

    [13]

    Pilgrim J S, Duncan M A 1993 J. Am. Chem. Soc. 115 9724

    [14]

    Pilgrim J S, Duncan M A 1993 J. Am. Chem. Soc. 115 4395

    [15]

    Clemmer D E, Shelimov K B, Jarrold M F 1994 Nature 367 718

    [16]

    Clemmer D E, Hunter J M, Shelimov K B, Jarrold M F 1994 Nature 372 248Google Scholar

    [17]

    Wang L S, Li S, Wu H 1996 J. Phys. Chem. 100 19211

    [18]

    Li S, Wu H, Wang L S 1997 J. Am. Chem. Soc. 119 7417

    [19]

    Li X, Wang L S 1999 J. Chem. Phys. 111 8389Google Scholar

    [20]

    Wang L S, Li X 2000 J. Chem. Phys. 112 3602

    [21]

    Wang L S, Cheng H S 1997 Phys. Rev. Lett. 78 2983

    [22]

    Wang X B, Ding C F, Wang L S 1997 J. Phys. Chem. A 101 7699Google Scholar

    [23]

    Zhai H J, Wang L S, Jena P, Gutsev G L, Bauschlicher C W 2004 J. Chem. Phys. 120 8996Google Scholar

    [24]

    Fan J W, Lou L, Wang L S 1995 J. Chem. Phys. 102 2701Google Scholar

    [25]

    Ticknor B W, Bandyopadhyay B, Duncan M A 2008 J. Phys. Chem. A 112 12355

    [26]

    León I, Ruipérez F, Ugalde J M, Wang L S 2016 J. Chem. Phys. 145 064304Google Scholar

    [27]

    Xu X L, Yang B, Zhang C J, Xu H G, Zheng W J 2019 J. Chem. Phys. 150 074304Google Scholar

    [28]

    Redondo P, Barrientos C, Largo A 2005 J. Phys. Chem. A 109 8594Google Scholar

    [29]

    Redondo P, Barrientos C, Largo A 2006 J. Phys. Chem. A 110 4057

    [30]

    Redondo P, Barrientos C, Largo A 2006 J. Chem. Theory Comput. 2 885Google Scholar

    [31]

    Redondo P, Barrientos C, Largo A 2006 J. Mol. Struct. 769 225Google Scholar

    [32]

    Barrientos C, Redondo P, Largo A 2007 J. Chem. Theory Comput. 3 657Google Scholar

    [33]

    Largo L, Cimas Á, Redondo P, Rayón V M, Barrientos C 2007 Int. J. Mass Spectrom. 266 50Google Scholar

    [34]

    Redondo P, Barrientos C, Largo A 2008 Int. J. Quantum Chem. 108 1684Google Scholar

    [35]

    Redondo P, Barrientos C, Largo A 2008 Int. J. Mass Spectrom. 272 187Google Scholar

    [36]

    Largo L, Barrientos C, Redondo P 2009 J. Chem. Phys. 130 134304Google Scholar

    [37]

    Redondo P, Largo L, Barrientos C 2009 Chem. Phys. 364 1Google Scholar

    [38]

    Yuan J Y, Xu H G, Zheng W J 2014 Phys. Chem. Chem. Phys. 16 5434Google Scholar

    [39]

    Yuan J Y, Wang P, Hou G L, Feng G, Zhang W J, Xu X L, Xu H G, Yang J L, Zheng W J 2016 J. Phys. Chem. A 120 1520

    [40]

    Xu X L, Yuan J Y, Yang B, Xu H G, Zheng W J 2017 Chin. J. Chem. Phys. 30 717Google Scholar

    [41]

    Wang L S, Wang X B, Wu H, Cheng H 1998 J. Am. Chem. Soc. 120 6556Google Scholar

    [42]

    Strout D L, Hall M B 1996 J. Phys. Chem. 100 18007Google Scholar

    [43]

    Strout D L, Hall M B 1998 J. Phys. Chem. A 102 641

    [44]

    Strout D L, Miller III T F, Hall M B 1998 J. Phys. Chem. A 102 6307Google Scholar

    [45]

    Roszak S, Balasubramanian K 1998 J. Phys. Chem. A 102 6004Google Scholar

    [46]

    Li X, Liu S S, Chen W, Wang L S 1999 J. Chem. Phys. 111 2464Google Scholar

    [47]

    Dai D, Roszak S, Balasubramanian K 2000 J. Phys. Chem. A 104 9760Google Scholar

    [48]

    Dai D G, Balasubramanian K 2000 J. Phys. Chem. A 104 1325Google Scholar

    [49]

    Zhai H J, Liu S R, Li X, Wang L S 2001 J. Chem. Phys. 115 5170

    [50]

    Knappenberger K L, Clayborne P A, Reveles J U, Sobhy M A, Jones C E, Gupta U U, Khanna S N, Iordanov I, Sofo J, Castleman A W 2007 ACS Nano 1 319

    [51]

    Fukushima N, Miyajima K, Mafune F 2009 J. Phys. Chem. A 113 2309Google Scholar

    [52]

    Zhang Q, Song L, Lu X, Huang R b, Zheng L S 2010 J. Mol. Struct. 967 153Google Scholar

    [53]

    Harding D J, Kerpal C, Meijer G, Fielicke A 2013 J. Phys. Chem. Lett. 4 892Google Scholar

    [54]

    León I, Yang Z, Wang L S 2014 J. Chem. Phys. 140 084303Google Scholar

    [55]

    León I, Ruiperez F, Ugalde J M, Wang L S 2018 J. Chem. Phys. 149 144307Google Scholar

    [56]

    Wang P, Zhang W, Xu X L, Yuan J, Xu H G, Zheng W 2017 J. Chem. Phys. 146 194303Google Scholar

    [57]

    Lu S J 2018 Chem. Phys. Lett. 699 218Google Scholar

    [58]

    Lu S J 2018 Chem. Phys. Lett. 694 70Google Scholar

    [59]

    Heaven M W, Stewart G M, Buntine M A, Meth G F 2000 J. Phys. Chem. A 104 3308Google Scholar

    [60]

    van Heijnsbergen D, Fielicke A, Meijer G, von Helden G 2002 Phys. Rev. Lett. 89 013401Google Scholar

    [61]

    Dryza V, Addicoat M A, Gascooke J R, Buntine M A, Metha G F 2005 J. Phys. Chem. A 109 11180

    [62]

    Dryza V, Alvino J F, Metha G F 2010 J. Phys. Chem. A 114 4080

    [63]

    Aravind G, Nrisimhamurty M, Mane R G, Gupta A K, Krishnakumar E 2015 Phys. Rev. A 92 042503Google Scholar

    [64]

    Li H F, Zhao Y X, Yuan Z, Liu Q Y, Li Z Y, Li X N, Ning C G, He S G 2017 J. Phys. Chem. Lett. 8 605Google Scholar

    [65]

    Mou L H, Liu Q Y, Zhang T, Li Z Y, He S G 2018 J. Phys. Chem. A 122 3489Google Scholar

    [66]

    Li Z Y, Mou L H, Wei G P, Ren Y, Zhang M Q, Liu Q Y, He S G 2019 Inorg. Chem. 58 4701Google Scholar

    [67]

    Chernyy V, Logemann R, Kirilyuk A, Bakker J M 2018 ChemPhysChem 19 1424Google Scholar

    [68]

    Savino R, Fumoa M D S, Paterna D, Di Masoa A, Monteverde F 2010 Aerosp. Sci. Technol. 14 178Google Scholar

    [69]

    Graeve O A, Munir Z A 2011 J. Mater. Res. 17 609

    [70]

    Fukunaga A, Chu S, McHenry M E 2011 J. Mater. Res. 13 2465

    [71]

    Tuleushev Y Z, Volodin V N, Zhakanbaev E A, Alimzhan B 2016 Phys. Met. Metall. 117 789Google Scholar

    [72]

    Mehdikhan B, Borhani G H, Bakhshi S R, Baharvandi H R 2017 Refract. Ind. Ceram. 57 507Google Scholar

    [73]

    Xu H G, Zhang Z G, Feng Y, Zheng W 2010 Chem. Phys. Lett. 498 22Google Scholar

    [74]

    Lü J, Wang Y, Zhu L, Ma Y 2012 J. Chem. Phys. 137 084104Google Scholar

    [75]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2016 GAUSSIAN 09 (Revision Ed. 01) (Wallingford, CT: Gaussian, Inc.)

    [76]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [77]

    Pritchard B P, Altarawy D, Didier B, Gibson T D, Windus T L 2019 J. Chem. Inf. Model. 59 4814Google Scholar

    [78]

    Glendening E D, Badenhoop J K, Reed A E, Carpenter J E, Bohmann J A, Morales C M, Landis C R, Weinhold F NBO 6.0 (http://nbo6.chem.wisc.edu/)

    [79]

    Tozer D J, Handy N C 1998 J. Chem. Phys. 109 10180Google Scholar

    [80]

    Akola J, Manninen M, Häkkinen H, Landman U, Li X, Wang L S 1999 Phys. Rev. B 60 R11297Google Scholar

    [81]

    Lu T, Chen F 2012 J. Comput. Chem. 33 580Google Scholar

    [82]

    Reed A E, Weinstock R B, Weinhold F 1985 J. Chem. Phys. 83 735

    [83]

    Fielicke A, Gruene P, Haertelt M, Harding D J, Meijer G 2010 J. Phys. Chem. A 114 9755Google Scholar

    [84]

    Shabalin I L 2014 Ultra-HighTemperatureMaterials (1st Ed.) (Dordrecht: Springer Netherlands) p389

  • 图 1  在532和266 nm条件下采集的${\rm{Ta}}_4{\rm{C}}_n^{-} $(n = 0—4)团簇负离子的光电子能谱

    Fig. 1.  Photoelectron spectra of ${\rm{Ta}}_4{\rm{C}}_n^{-} $ (n = 0–4) cluster anions recorded with 532 (left) and 266 nm (right) photons.

    图 2  ${\rm{Ta}}_4{\rm{C}}_n^{-} $(n = 0—4)团簇负离子的低能量异构体. 相对能量是在PBEPBE/aug-cc-pVTZ/C/aug-cc-pVTZ-PP/Ta水平获得. 其中红色球代表碳原子, 青色球代表钽原子

    Fig. 2.  Low-lying isomers of ${\rm{Ta}}_4{\rm{C}}_n^{-} $ (n = 0–4) cluster anions. The relative energies are calculated at the PBEPBE/aug-cc-pVTZ/C/aug-cc-pVTZ-PP/Ta level. Cyan and red balls stand for the tantalum and carbon atoms, respectively.

    图 3  ${\rm{Ta}}_4{\rm{C}}_n^{-} $(n = 0—4)团簇负离子的模拟光电子能谱(DOS)与实验光电子能谱对比, 竖线表示理论计算所对应的分子能级

    Fig. 3.  Comparisons of the experimental photoelectron spectra of ${\rm{Ta}}_4{\rm{C}}_n^{-} $ (n = 0–4) with their simulated density of states (DOS) spectra. The vertical lines are the theoretically simulated spectral lines.

    图 4  中性Ta4Cn (n = 0—4)团簇的低能量异构体

    Fig. 4.  Low-lying isomers of neutral Ta4Cn (n = 0–4) clusters.

    图 5  ${\rm{Ta}}_4{\rm{C}}_n^{-} $(n = 0—4)团簇负离子的实验VDE/ADE和理论VDE/ADE随碳原子增加的变化趋势

    Fig. 5.  Experimental and theoretical VDEs and ADEs of ${\rm{Ta}}_4{\rm{C}}_n^{-} $ (n = 0–4) versus the number of carbon atoms.

    图 6  ${\rm{Ta}}_4{\rm{C}}_n^{-} $ (n = 0—4)团簇负离子的部分分子轨道示意图

    Fig. 6.  Diagrams of the selected molecular orbitals of ${\rm{Ta}}_4{\rm{C}}_n^{-} $ (n = 0–4) cluster anions.

    图 7  ${\rm{Ta}}_4{\rm{C}}_n^{-/0} $(n = 0—4)团簇的NPA电荷(Q, |e|, 红色数值)和Wiberg键级(紫色数值), 括号中为中性团簇相对应数值

    Fig. 7.  NPA charges (Q, in |e|, red values) and Wiberg bond indices (WBIs, purple values) of the most stable structures of ${\rm{Ta}}_4{\rm{C}}_n^{-/0} $ (n = 0–4) clusters. The values in parentheses are from the neutral clusters.

    图 8  ${\rm{Ta}}_{4+n}^{-/0} $${\rm{Ta}}_4{\rm{C}}_n^{-/0} $(n = 0—4)团簇的单原子结合能(Eb)随碳/钽原子增加变化图

    Fig. 8.  Size-dependence of binding energies per-atom (Eb) of ${\rm{Ta}}_{4+n}^{-/0} $ and ${\rm{Ta}}_4{\rm{C}}_n^{-/0} $ (n = 0–4) clusters.

    表 1  ${\rm{Ta}}_4{\rm{C}}_n^{-} $(n = 0—4)团簇负离子的低能量异构体的相对能量(∆E), 理论VDEs/ADEs以及实验VDEs/ADEs

    Table 1.  Relative energies (∆E ), theoretical VDEs and ADEs of the low-lying isomers for ${\rm{Ta}}_4{\rm{C}}_n^{-} $ (n = 0–4) cluster anions, as well as the experimental VDEs and ADEs estimated from their photoelectron spectra.

    异构体电子态对称点群E/eVVDE/eVADE/eV
    理论值实验值理论值实验值
    ${\rm{Ta}}_4^{-} $0AC22B00.941.160.921.10
    0BC14A0.301.321.16
    0CD2h2B2u0.921.591.39
    ${\rm{Ta}}_4{\rm{C}}_1^{-} $1ACs2A''01.231.351.221.31
    1BC2v2B20.271.071.03
    1CC2v2B20.461.180.76
    ${\rm{Ta}}_4{\rm{C}}_2^{-} $2ACs2A''01.491.511.341.44
    2BCs2A''0.291.221.18
    2CCs4A''0.301.051.04
    ${\rm{Ta}}_4{\rm{C}}_3^{-} $3AC3v2A101.171.301.131.21
    3BCs6A''1.031.661.65
    3CC2v2A11.411.351.29
    ${\rm{Ta}}_4{\rm{C}}_4^{-} $4AD2d4B201.701.861.691.80
    4BC12A0.091.611.391.601.35
    4CD2d6A20.211.751.74
    下载: 导出CSV

    表 2  ${\rm{Ta}}_{4+n}^{-/0} $${\rm{Ta}}_4{\rm{C}}_n^{-/0} $(n = 0—4)团簇的单原子结合能(Eb)

    Table 2.  Binding energies per-atom (Eb) of ${\rm{Ta}}_{4+n}^{-/0} $ and ${\rm{Ta}}_4{\rm{C}}_n^{-/0} $ (n = 0–4) clusters.

    nEb
    ${\rm{Ta}}_4{\rm{C}}_n^{-} $${\rm{Ta}}_{4+n}^{-} $Ta4CnTa4+n
    04.404.404.354.35
    15.104.785.434.65
    25.904.996.164.93
    36.565.306.815.22
    46.985.447.135.37
    下载: 导出CSV
  • [1]

    Kelly T G, Chen J G 2012 Chem. Soc. Rev. 41 8021Google Scholar

    [2]

    Gao P, Wang Y, Yang S Q, Chen Y J, Xue Z, Wang L Q, Li G B, Sun Y Z 2012 Int. J. Hydrogen Energy 37 17126Google Scholar

    [3]

    Li Z Y, Hu L, Liu Q Y, Ning C G, Chen H, He S G, Yao J 2015 Chem. Eur. J. 21 17748Google Scholar

    [4]

    Li H F, Li Z Y, Liu Q Y, Li X N, Zhao Y X, He S G 2015 J. Phys. Chem. Lett. 6 2287

    [5]

    Jiang J, Wang S, Li W, Klein L 2016 J. Am. Ceram. Soc. 99 3198Google Scholar

    [6]

    Zhong Y, Xia X H, Shi F, Zhan J Y, Tu J P, Fan H J 2016 Adv. Sci. 3 1500286Google Scholar

    [7]

    Shahzad F, Aihabeb M, Hatter C B, Anasori B, Hong S M, Koo C M, Gogotsi Y 2016 Science 353 1137Google Scholar

    [8]

    Chai Y, Guo T, Jin C M, Haufler R E, Chibante L P F, Fure J, Wang L H, Alford J M, Smalley R E 1991 J. Phys. Chem. 95 7564

    [9]

    Guo B C, Kerns K I, Castleman A W 1992 Science 255 1411Google Scholar

    [10]

    Guo B C, Wei S, Purnell J, Buzza S, Castleman A W Jr 1992 Science 256 515Google Scholar

    [11]

    Reddy B V, Khanna S N, Jena P 1992 Science 258 1640Google Scholar

    [12]

    Pilgrim J S, Duncan M A 1993 J. Am. Chem. Soc. 115 6958

    [13]

    Pilgrim J S, Duncan M A 1993 J. Am. Chem. Soc. 115 9724

    [14]

    Pilgrim J S, Duncan M A 1993 J. Am. Chem. Soc. 115 4395

    [15]

    Clemmer D E, Shelimov K B, Jarrold M F 1994 Nature 367 718

    [16]

    Clemmer D E, Hunter J M, Shelimov K B, Jarrold M F 1994 Nature 372 248Google Scholar

    [17]

    Wang L S, Li S, Wu H 1996 J. Phys. Chem. 100 19211

    [18]

    Li S, Wu H, Wang L S 1997 J. Am. Chem. Soc. 119 7417

    [19]

    Li X, Wang L S 1999 J. Chem. Phys. 111 8389Google Scholar

    [20]

    Wang L S, Li X 2000 J. Chem. Phys. 112 3602

    [21]

    Wang L S, Cheng H S 1997 Phys. Rev. Lett. 78 2983

    [22]

    Wang X B, Ding C F, Wang L S 1997 J. Phys. Chem. A 101 7699Google Scholar

    [23]

    Zhai H J, Wang L S, Jena P, Gutsev G L, Bauschlicher C W 2004 J. Chem. Phys. 120 8996Google Scholar

    [24]

    Fan J W, Lou L, Wang L S 1995 J. Chem. Phys. 102 2701Google Scholar

    [25]

    Ticknor B W, Bandyopadhyay B, Duncan M A 2008 J. Phys. Chem. A 112 12355

    [26]

    León I, Ruipérez F, Ugalde J M, Wang L S 2016 J. Chem. Phys. 145 064304Google Scholar

    [27]

    Xu X L, Yang B, Zhang C J, Xu H G, Zheng W J 2019 J. Chem. Phys. 150 074304Google Scholar

    [28]

    Redondo P, Barrientos C, Largo A 2005 J. Phys. Chem. A 109 8594Google Scholar

    [29]

    Redondo P, Barrientos C, Largo A 2006 J. Phys. Chem. A 110 4057

    [30]

    Redondo P, Barrientos C, Largo A 2006 J. Chem. Theory Comput. 2 885Google Scholar

    [31]

    Redondo P, Barrientos C, Largo A 2006 J. Mol. Struct. 769 225Google Scholar

    [32]

    Barrientos C, Redondo P, Largo A 2007 J. Chem. Theory Comput. 3 657Google Scholar

    [33]

    Largo L, Cimas Á, Redondo P, Rayón V M, Barrientos C 2007 Int. J. Mass Spectrom. 266 50Google Scholar

    [34]

    Redondo P, Barrientos C, Largo A 2008 Int. J. Quantum Chem. 108 1684Google Scholar

    [35]

    Redondo P, Barrientos C, Largo A 2008 Int. J. Mass Spectrom. 272 187Google Scholar

    [36]

    Largo L, Barrientos C, Redondo P 2009 J. Chem. Phys. 130 134304Google Scholar

    [37]

    Redondo P, Largo L, Barrientos C 2009 Chem. Phys. 364 1Google Scholar

    [38]

    Yuan J Y, Xu H G, Zheng W J 2014 Phys. Chem. Chem. Phys. 16 5434Google Scholar

    [39]

    Yuan J Y, Wang P, Hou G L, Feng G, Zhang W J, Xu X L, Xu H G, Yang J L, Zheng W J 2016 J. Phys. Chem. A 120 1520

    [40]

    Xu X L, Yuan J Y, Yang B, Xu H G, Zheng W J 2017 Chin. J. Chem. Phys. 30 717Google Scholar

    [41]

    Wang L S, Wang X B, Wu H, Cheng H 1998 J. Am. Chem. Soc. 120 6556Google Scholar

    [42]

    Strout D L, Hall M B 1996 J. Phys. Chem. 100 18007Google Scholar

    [43]

    Strout D L, Hall M B 1998 J. Phys. Chem. A 102 641

    [44]

    Strout D L, Miller III T F, Hall M B 1998 J. Phys. Chem. A 102 6307Google Scholar

    [45]

    Roszak S, Balasubramanian K 1998 J. Phys. Chem. A 102 6004Google Scholar

    [46]

    Li X, Liu S S, Chen W, Wang L S 1999 J. Chem. Phys. 111 2464Google Scholar

    [47]

    Dai D, Roszak S, Balasubramanian K 2000 J. Phys. Chem. A 104 9760Google Scholar

    [48]

    Dai D G, Balasubramanian K 2000 J. Phys. Chem. A 104 1325Google Scholar

    [49]

    Zhai H J, Liu S R, Li X, Wang L S 2001 J. Chem. Phys. 115 5170

    [50]

    Knappenberger K L, Clayborne P A, Reveles J U, Sobhy M A, Jones C E, Gupta U U, Khanna S N, Iordanov I, Sofo J, Castleman A W 2007 ACS Nano 1 319

    [51]

    Fukushima N, Miyajima K, Mafune F 2009 J. Phys. Chem. A 113 2309Google Scholar

    [52]

    Zhang Q, Song L, Lu X, Huang R b, Zheng L S 2010 J. Mol. Struct. 967 153Google Scholar

    [53]

    Harding D J, Kerpal C, Meijer G, Fielicke A 2013 J. Phys. Chem. Lett. 4 892Google Scholar

    [54]

    León I, Yang Z, Wang L S 2014 J. Chem. Phys. 140 084303Google Scholar

    [55]

    León I, Ruiperez F, Ugalde J M, Wang L S 2018 J. Chem. Phys. 149 144307Google Scholar

    [56]

    Wang P, Zhang W, Xu X L, Yuan J, Xu H G, Zheng W 2017 J. Chem. Phys. 146 194303Google Scholar

    [57]

    Lu S J 2018 Chem. Phys. Lett. 699 218Google Scholar

    [58]

    Lu S J 2018 Chem. Phys. Lett. 694 70Google Scholar

    [59]

    Heaven M W, Stewart G M, Buntine M A, Meth G F 2000 J. Phys. Chem. A 104 3308Google Scholar

    [60]

    van Heijnsbergen D, Fielicke A, Meijer G, von Helden G 2002 Phys. Rev. Lett. 89 013401Google Scholar

    [61]

    Dryza V, Addicoat M A, Gascooke J R, Buntine M A, Metha G F 2005 J. Phys. Chem. A 109 11180

    [62]

    Dryza V, Alvino J F, Metha G F 2010 J. Phys. Chem. A 114 4080

    [63]

    Aravind G, Nrisimhamurty M, Mane R G, Gupta A K, Krishnakumar E 2015 Phys. Rev. A 92 042503Google Scholar

    [64]

    Li H F, Zhao Y X, Yuan Z, Liu Q Y, Li Z Y, Li X N, Ning C G, He S G 2017 J. Phys. Chem. Lett. 8 605Google Scholar

    [65]

    Mou L H, Liu Q Y, Zhang T, Li Z Y, He S G 2018 J. Phys. Chem. A 122 3489Google Scholar

    [66]

    Li Z Y, Mou L H, Wei G P, Ren Y, Zhang M Q, Liu Q Y, He S G 2019 Inorg. Chem. 58 4701Google Scholar

    [67]

    Chernyy V, Logemann R, Kirilyuk A, Bakker J M 2018 ChemPhysChem 19 1424Google Scholar

    [68]

    Savino R, Fumoa M D S, Paterna D, Di Masoa A, Monteverde F 2010 Aerosp. Sci. Technol. 14 178Google Scholar

    [69]

    Graeve O A, Munir Z A 2011 J. Mater. Res. 17 609

    [70]

    Fukunaga A, Chu S, McHenry M E 2011 J. Mater. Res. 13 2465

    [71]

    Tuleushev Y Z, Volodin V N, Zhakanbaev E A, Alimzhan B 2016 Phys. Met. Metall. 117 789Google Scholar

    [72]

    Mehdikhan B, Borhani G H, Bakhshi S R, Baharvandi H R 2017 Refract. Ind. Ceram. 57 507Google Scholar

    [73]

    Xu H G, Zhang Z G, Feng Y, Zheng W 2010 Chem. Phys. Lett. 498 22Google Scholar

    [74]

    Lü J, Wang Y, Zhu L, Ma Y 2012 J. Chem. Phys. 137 084104Google Scholar

    [75]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2016 GAUSSIAN 09 (Revision Ed. 01) (Wallingford, CT: Gaussian, Inc.)

    [76]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [77]

    Pritchard B P, Altarawy D, Didier B, Gibson T D, Windus T L 2019 J. Chem. Inf. Model. 59 4814Google Scholar

    [78]

    Glendening E D, Badenhoop J K, Reed A E, Carpenter J E, Bohmann J A, Morales C M, Landis C R, Weinhold F NBO 6.0 (http://nbo6.chem.wisc.edu/)

    [79]

    Tozer D J, Handy N C 1998 J. Chem. Phys. 109 10180Google Scholar

    [80]

    Akola J, Manninen M, Häkkinen H, Landman U, Li X, Wang L S 1999 Phys. Rev. B 60 R11297Google Scholar

    [81]

    Lu T, Chen F 2012 J. Comput. Chem. 33 580Google Scholar

    [82]

    Reed A E, Weinstock R B, Weinhold F 1985 J. Chem. Phys. 83 735

    [83]

    Fielicke A, Gruene P, Haertelt M, Harding D J, Meijer G 2010 J. Phys. Chem. A 114 9755Google Scholar

    [84]

    Shabalin I L 2014 Ultra-HighTemperatureMaterials (1st Ed.) (Dordrecht: Springer Netherlands) p389

  • [1] 邓祥文, 伍力源, 赵锐, 王嘉鸥, 赵丽娜. 机器学习在光电子能谱中的应用及展望. 物理学报, 2024, 73(21): 210701. doi: 10.7498/aps.73.20240957
    [2] 李亚莎, 孙林翔, 周筱, 陈凯, 汪辉耀. 基于密度泛函理论的外电场下C5F10O的结构及其激发特性. 物理学报, 2020, 69(1): 013101. doi: 10.7498/aps.69.20191455
    [3] 蒋元祺, 彭平. 稳态Cu-Zr二十面体团簇电子结构的密度泛函研究. 物理学报, 2018, 67(13): 132101. doi: 10.7498/aps.67.20180296
    [4] 张敏, 唐田田, 张朝民. NaLi分子飞秒含时光电子能谱的理论研究. 物理学报, 2014, 63(2): 023302. doi: 10.7498/aps.63.023302
    [5] 宋健, 李锋, 邓开明, 肖传云, 阚二军, 陆瑞锋, 吴海平. 单层硅Si6H4Ph2的稳定性和电子结构密度泛函研究. 物理学报, 2012, 61(24): 246801. doi: 10.7498/aps.61.246801
    [6] 张岩, 陈雪风, 齐凯天, 李兵, 杨传路, 盛勇. (SiO2)n-(n≤7)团簇的密度泛函研究. 物理学报, 2010, 59(7): 4598-4601. doi: 10.7498/aps.59.4598
    [7] 吴海飞, 张寒洁, 廖清, 陆赟豪, 斯剑霄, 李海洋, 鲍世宁, 吴惠祯, 何丕模. Mn/PbTe(111)界面行为的光电子能谱研究. 物理学报, 2009, 58(2): 1310-1315. doi: 10.7498/aps.58.1310
    [8] 曹青松, 邓开明, 陈宣, 唐春梅, 黄德财. MC20F20(M=Li,Na,Be和Mg)几何结构和电子性质的密度泛函计算研究. 物理学报, 2009, 58(3): 1863-1869. doi: 10.7498/aps.58.1863
    [9] 齐凯天, 杨传路, 李兵, 张岩, 盛勇. TinLa(n=1—7)的密度泛函研究. 物理学报, 2009, 58(10): 6956-6961. doi: 10.7498/aps.58.6956
    [10] 唐春梅, 陈宣, 邓开明, 胡凤兰, 黄德财, 夏海燕. 富勒烯衍生物C60(CF3)n(n=2,4,6,10)几何结构和电子性质变化规律的密度泛函研究. 物理学报, 2009, 58(4): 2675-2679. doi: 10.7498/aps.58.2675
    [11] 矫玉秋, 赵 昆, 卢贵武. H3PAuPh与(H3PAu)2(1,4-C6H4)2光谱性质的密度泛函研究. 物理学报, 2008, 57(3): 1592-1598. doi: 10.7498/aps.57.1592
    [12] 盛 勇, 毛华平, 涂铭旌. TinMg (n=1—10)掺杂团簇的密度泛函研究. 物理学报, 2008, 57(7): 4153-4158. doi: 10.7498/aps.57.4153
    [13] 蒋岩玲, 付石友, 邓开明, 唐春梅, 谭伟石, 黄德财, 刘玉真, 吴海平. C60富勒烯-巴比妥酸及其二聚体几何结构和电子结构的密度泛函计算研究. 物理学报, 2008, 57(6): 3690-3697. doi: 10.7498/aps.57.3690
    [14] 柏于杰, 付石友, 邓开明, 唐春梅, 陈 宣, 谭伟石, 刘玉真, 黄德财. 密度泛函理论计算内掺氢分子富勒烯H2@C60及其二聚体的几何结构和电子结构. 物理学报, 2008, 57(6): 3684-3689. doi: 10.7498/aps.57.3684
    [15] 袁勇波, 刘玉真, 邓开明, 杨金龙. SiN团簇光电子能谱的指认. 物理学报, 2006, 55(9): 4496-4500. doi: 10.7498/aps.55.4496
    [16] 贾文红, 武海顺. GamPn和GamP-n团簇结构及其光电子能谱的理论研究. 物理学报, 2004, 53(4): 1056-1062. doi: 10.7498/aps.53.1056
    [17] 崔大复, 王焕华, 戴守愚, 周岳亮, 陈正豪, 杨国桢, 刘凤琴, 奎热西, 钱海杰. Sb掺杂SrTio3透明导电薄膜的光电子能谱研究. 物理学报, 2002, 51(1): 187-191. doi: 10.7498/aps.51.187
    [18] 吕斌, 吕萍, 施申蕾, 张建华, 唐建新, 楼辉, 何丕模, 鲍世宁. OPCOT在Ru(0001)表面上的紫外光电子能谱研究. 物理学报, 2002, 51(11): 2644-2648. doi: 10.7498/aps.51.2644
    [19] 姚明珍, 梁玲, 顾牡, 段勇, 马晓辉. PbWO4晶体空位型缺陷电子结构的研究. 物理学报, 2002, 51(1): 125-128. doi: 10.7498/aps.51.125
    [20] 童宏勇, 顾 牡, 汤学峰, 梁 玲, 姚明珍. PbWO4电子结构的密度泛函计算. 物理学报, 2000, 49(8): 1545-1549. doi: 10.7498/aps.49.1545
计量
  • 文章访问数:  6394
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-17
  • 修回日期:  2020-09-01
  • 上网日期:  2021-01-11
  • 刊出日期:  2021-01-20

/

返回文章
返回