搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁化套筒惯性聚变中轴向磁场演化特征与Nernst效应影响

赵海龙 王刚华 肖波 王强 阚明先 段书超 谢龙

引用本文:
Citation:

磁化套筒惯性聚变中轴向磁场演化特征与Nernst效应影响

赵海龙, 王刚华, 肖波, 王强, 阚明先, 段书超, 谢龙

Evolution characteristic of axial magnetic field and Nernst effect in magnetized liner inertial fusion

Zhao Hai-Long, Wang Gang-Hua, Xiao Bo, Wang Qiang, Kan Ming-Xian, Duan Shu-Chao, Xie Long
PDF
HTML
导出引用
  • 轴向磁场是磁化套筒惯性聚变(magnetized liner inertial fusion, MagLIF)有别于其他惯性约束聚变构型的主要标志之一. 本文在建立集成化物理模型并编写一维模拟程序的基础上, 通过对ZR装置驱动能力下典型MagLIF负载参数的模拟, 系统研究并获得MagLIF各个阶段轴向磁场演化与分布特征, 发现预加热引起的压力不平衡导致燃料中磁通保有量并未呈现随时间单调递减的关系, 而是反复震荡甚至出现局部短时间内反而增加的演化曲线. 通过在磁场演化方程中引入控制项来讨论Nernst效应的影响, 计算结果表明随着初始磁场强度降低(30, 20, 10 T), Nernst效应越发明显, 磁通损失增大(28%, 44%, 73%), α粒子能量沉积比例则大幅降低(44%, 27%, 4%), 因此初始磁场强度不宜太低; 预加热结束后应使燃料中温度径向分布尽量均匀、平缓, 有助于减少Nernst效应的影响. 所取得的研究结果有助于加深对MagLIF中磁通压缩和磁扩散过程的物理图像认知和理解, 对未来实验负载参数设计也有重要的指导作用.
    Axial magnetic field is one of the main parameters of magnetized liner inertial fusion (MagLIF), which is greatly different from other traditional inertial confinement fusion configurations. The introduce of axial magnetic field dramatically increases energy deposit efficiency of alpha particles, when initial Bz increases from 0 to 30 T, the ratio of deposited alpha energy rises from 7% to 53%. In the MagLIF process, the evolvement of magnetic flux in fuel can be roughly divided into three main stages: undisturbed, oscillation, and equilibrium. The distributions and evolution characteristic of axial magnetic field are both determined by the liner conductivity, fuel conductivity, and the fluid dynamics. The pressure imbalance between fuel and liner, caused by laser injection, is the source of fluid oscillation, which is an intrinsic disadvantage of laser preheating method. This fluid oscillation does not lead the magnetic flux to decrease monotonically in the fuel during implosion process, but oscillate repeatedly, even increase in a short time. Nernst effect plays a negative role in MagLIF process. As initial axial magnetic field decreases from 30 to 20 to 10 T, the Nernst effect causes magnetic flux loss to increase from 28% to 44% to 73% correspondingly, and the deposited alpha energy ratio drops from 44% to 27% to 4% respectively. So the initial magnetic field is supposed to be moderately high. The radial distribution of temperature in fuel should be as uniform as possible after preheating, which is helpful in reducing the influence of Nernst effect. Compared with Nernst effect, the end loss effect is much responsible for rapid drawdown of fusion yield. A large number of physical images are acquired and summarized through this work, which are helpful in understanding the process of magnetic flux compression and diffusion in MagLIF process. The simulation can act as a powerful tool and the simulation results can serve as a useful guidance for the future experimental designs.
      通信作者: 赵海龙, ifp.zhaohailong@qq.com
    • 基金项目: 国家自然科学基金(批准号: 11205145, 12075226,21805262)资助的课题
      Corresponding author: Zhao Hai-Long, ifp.zhaohailong@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11205145, 12075226, 21805262)
    [1]

    Gao Z 2016 Matter Radiat. Extremes 1 153Google Scholar

    [2]

    章太阳, 陈冉 2017 物理学报 66 125201Google Scholar

    Zhang T Y, Chen R 2017 Acta Phys. Sin. 66 125201Google Scholar

    [3]

    Kazuhiko Horioka 2018 Matter Radiat. Extremes 3 12Google Scholar

    [4]

    Kawata S, Karino T, Ogoyski A I 2016 Matter Radiat. Extremes 1 89Google Scholar

    [5]

    Chen Y Y, Bao X H, Fu P, Gao G 2019 Chin. Phys. B 28 015201Google Scholar

    [6]

    Zhang Y K, Zhou R J, Hu L Q, Chen M W, Chao Y 2018 Chin. Phys. B 27 055206Google Scholar

    [7]

    Liu D Q, Zhou C P, Cao Z, Yan J C, Liu Y 2003 Fusion Eng. Des. 66 147Google Scholar

    [8]

    Liu D Q, Lin T, Qiao T, Li Q, Li G S, Bai G Y, Ran H, Cao Z, Cai L J, Zou H, Li Y 2015 Fusion Eng. Des. 96 298

    [9]

    Tikhonchuk V, Gu Y J, Klimo O, Limpouch J, Weber S 2019 Matter Radiat. Extremes 4 045402Google Scholar

    [10]

    薛全喜, 江少恩, 王哲斌, 王峰, 赵学庆, 易爱平, 丁永坤, 刘晶儒 2018 物理学报 24 094701Google Scholar

    Xue Q X, Jiang S E, Wang Z B, Wang F, Zhao X Q, Yi A P, Ding Y K, Liu J R 2018 Acta Phys. Sin. 24 094701Google Scholar

    [11]

    Wu F Y, Chu Y Y, Ramis R, Li Z H, Ma Y Y, Yang J L, Wang Z, Ye F, Huang Z C, Qi J M, Zhou L, Liang C, Chen S J, Ge Z Y, Yang X H, Wang S W 2018 Matter Radiat. Extremes 3 248Google Scholar

    [12]

    Ding N, Zhang Y, Xiao D L, Wu J M, Dai Z H, Yin L, Gao Z M, Sun S K, Xue C, Ning C, Shu X J, Wang J G 2016 Matter Radiat. Extremes 1 135Google Scholar

    [13]

    Slutz S A, Herrmann M C, Vesey R A, Sefkow A B, Sinars D B, Rovang D C, Peterson K J, Cuneo M E 2010 Phys. Plasmas 17 056303Google Scholar

    [14]

    Paradela J, García-Rubio F, Sanz J 2019 Phys. Plasmas 26 012705Google Scholar

    [15]

    Perkins L J, Logan B G, Zimmerman G B, Werner C J 2013 Phys. Plasmas 20 072708Google Scholar

    [16]

    Slutz S A, Vesey R A 2012 Phys. Rev. Lett 108 025003Google Scholar

    [17]

    Sefkow A B, Slutz S A, Koning J M, Marinak M M, Peterson K J, Sinars D B, Vesey R A 2014 Phys. Plasmas 21 072711Google Scholar

    [18]

    Slutz S A 2018 Phys. Plasmas 25 082707Google Scholar

    [19]

    Gomez M R, Slutz S A, Sefkow A B, et al. 2014 Phys. Rev. Lett 113 155003Google Scholar

    [20]

    Awe T J, McBride R D, Jennings C A, et al. 2013 Phys. Rev. Lett 111 235005Google Scholar

    [21]

    Seyler C E, Martin M R, Hamlin N D 2018 Phys. Plasmas 25 062711Google Scholar

    [22]

    Shipley G A, Awe T J, Hutsel B T, Slutz S A, Lamppa D C, Greenly J B, Hutchinson T M 2018 Phys. Plasmas 25 052703Google Scholar

    [23]

    Gourdain P A, Adams M B, Davies J R, Seyler C E 2017 Phys. Plasmas 24 102712Google Scholar

    [24]

    赵海龙, 肖波, 王刚华, 王强, 章征伟, 孙奇志, 邓建军 2020 物理学报 69 035203Google Scholar

    Zhao H L, Xiao B, Wang G H, Wang Q, Zhang Z W, Sun Q Z, Deng J J 2020 Acta Phys. Sin. 69 035203Google Scholar

    [25]

    Basko M M, Kemp A J, Meyer-ter-Vehn J 2000 Nucl. Fusion 40 59Google Scholar

    [26]

    Braginskii S I 1965 Reviews of Plasma Physics (New York: Consultants Bureau) p205.

  • 图 1  磁通压缩与扩散过程示意图(含Nernst效应)

    Fig. 1.  Schematic of magnetic flux compression and diffusion process (including Nernst effect).

    图 2  ZR装置95 kV充电电压下驱动电流随时间演化曲线[13]

    Fig. 2.  Driving current from ZR facility with charging voltage 95 kV.

    图 3  燃料中不同位置磁雷诺数随时间演化曲线

    Fig. 3.  Magnetic Reynolds numbers at different positions in fuel.

    图 4  套筒内轴向磁通保有量随时间演化曲线(归一化)

    Fig. 4.  Evolvement curve of remained magnetic flux in fuel (unified).

    图 5  MIST计算得到的64 ns时 (a) 密度和(b) 轴向磁场分布曲线

    Fig. 5.  Distributions of (a) density and (b) axial magnetic field at 64 ns calculated by MIST.

    图 6  MIST计算得到的80 ns时 (a) 密度和(b) 轴向磁场分布曲线

    Fig. 6.  Distributions of (a) density and (b) axial magnetic field at 80 ns calculated by MIST.

    图 7  MIST计算得到的86.6 ns时 (a) 温度和(b) 压强分布曲线

    Fig. 7.  Distributions of (a) temperature and (b) pressure at 86.6 ns calculated by MIST.

    图 8  MIST计算得到的94 ns时 (a) 温度和(b) 轴向磁场分布曲线

    Fig. 8.  Distributions of (a) temperature and (b) axial magnetic field at 94 ns calculated by MIST.

    图 9  MIST计算得到的101 ns时 (a) 温度和(b) 轴向磁场分布曲线

    Fig. 9.  Distributions of (a) temperature and (b) axial magnetic field at 101 ns calculated by MIST.

    图 10  MIST计算得到的112 ns时 (a) 温度和(b) 轴向磁场分布曲线

    Fig. 10.  Distributions of (a) temperature and (b) axial magnetic field at 112 ns calculated by MIST.

    图 11  MIST计算得到的124 ns时 (a) 压强和(b) 轴向磁场分布曲线

    Fig. 11.  Distributions of (a) pressure and (b) axial magnetic field at 124 ns calculated by MIST.

    图 12  MIST计算得到的136 ns时 (a) 温度, (b) 轴向磁场分布曲线

    Fig. 12.  Distributions of (a) temperature and (b) axial magnetic field at 136 ns calculated by MIST.

    图 13  MIST计算得到的迟滞时刻 (a) 压强, (b) 轴向磁场分布曲线

    Fig. 13.  Distributions of (a) pressure and (b) axial magnetic field at stagnation time calculated by MIST.

    图 14  是否考虑Nernst项给出的 (a) 磁通演化和(b) 迟滞时刻磁场分布对比曲线

    Fig. 14.  Comparisons between (a) magnetic flux evolvements and (b) magnetic field distributions at stagnation time with or without Nernst effect.

    图 15  考虑Nernst效应后计算得到迟滞时刻燃料中 (a) 温度和 (b)密度分布曲线

    Fig. 15.  Distributions of (a) temperature and (b) magnetic field at stagnation time calculated by MIST with Nernst effect.

    图 16  初始10 T磁场下计算得到的 (a)磁通和(b)产额随时间演化曲线

    Fig. 16.  Comparisons between (a) magnetic flux and (b) fusion yield evolvements with or without Nernst effect (Bz0 = 10 T).

    图 17  不同初始磁场下计算得到的迟滞时刻磁场分布曲线 (a) Bz0 = 10 (b) Bz0 = 20 T

    Fig. 17.  Distributions of magnetic field at stagnation time with initial (a) Bz0 = 10 and (b) Bz0 = 20 T.

    图 18  初始20 T磁场下计算得到的 (a)磁通和(b)产额随时间演化曲线

    Fig. 18.  Comparisons between (a) magnetic flux and (b) fusion yield evolvements with or without Nernst effect (Bz0 = 20 T).

    图 19  同一能量不同预加热分布计算得到的 (a)磁通演化和(b)磁场分布曲线

    Fig. 19.  Calculated (a) magnetic flux evolvements and (b) magnetic field distributions with different preheat results.

  • [1]

    Gao Z 2016 Matter Radiat. Extremes 1 153Google Scholar

    [2]

    章太阳, 陈冉 2017 物理学报 66 125201Google Scholar

    Zhang T Y, Chen R 2017 Acta Phys. Sin. 66 125201Google Scholar

    [3]

    Kazuhiko Horioka 2018 Matter Radiat. Extremes 3 12Google Scholar

    [4]

    Kawata S, Karino T, Ogoyski A I 2016 Matter Radiat. Extremes 1 89Google Scholar

    [5]

    Chen Y Y, Bao X H, Fu P, Gao G 2019 Chin. Phys. B 28 015201Google Scholar

    [6]

    Zhang Y K, Zhou R J, Hu L Q, Chen M W, Chao Y 2018 Chin. Phys. B 27 055206Google Scholar

    [7]

    Liu D Q, Zhou C P, Cao Z, Yan J C, Liu Y 2003 Fusion Eng. Des. 66 147Google Scholar

    [8]

    Liu D Q, Lin T, Qiao T, Li Q, Li G S, Bai G Y, Ran H, Cao Z, Cai L J, Zou H, Li Y 2015 Fusion Eng. Des. 96 298

    [9]

    Tikhonchuk V, Gu Y J, Klimo O, Limpouch J, Weber S 2019 Matter Radiat. Extremes 4 045402Google Scholar

    [10]

    薛全喜, 江少恩, 王哲斌, 王峰, 赵学庆, 易爱平, 丁永坤, 刘晶儒 2018 物理学报 24 094701Google Scholar

    Xue Q X, Jiang S E, Wang Z B, Wang F, Zhao X Q, Yi A P, Ding Y K, Liu J R 2018 Acta Phys. Sin. 24 094701Google Scholar

    [11]

    Wu F Y, Chu Y Y, Ramis R, Li Z H, Ma Y Y, Yang J L, Wang Z, Ye F, Huang Z C, Qi J M, Zhou L, Liang C, Chen S J, Ge Z Y, Yang X H, Wang S W 2018 Matter Radiat. Extremes 3 248Google Scholar

    [12]

    Ding N, Zhang Y, Xiao D L, Wu J M, Dai Z H, Yin L, Gao Z M, Sun S K, Xue C, Ning C, Shu X J, Wang J G 2016 Matter Radiat. Extremes 1 135Google Scholar

    [13]

    Slutz S A, Herrmann M C, Vesey R A, Sefkow A B, Sinars D B, Rovang D C, Peterson K J, Cuneo M E 2010 Phys. Plasmas 17 056303Google Scholar

    [14]

    Paradela J, García-Rubio F, Sanz J 2019 Phys. Plasmas 26 012705Google Scholar

    [15]

    Perkins L J, Logan B G, Zimmerman G B, Werner C J 2013 Phys. Plasmas 20 072708Google Scholar

    [16]

    Slutz S A, Vesey R A 2012 Phys. Rev. Lett 108 025003Google Scholar

    [17]

    Sefkow A B, Slutz S A, Koning J M, Marinak M M, Peterson K J, Sinars D B, Vesey R A 2014 Phys. Plasmas 21 072711Google Scholar

    [18]

    Slutz S A 2018 Phys. Plasmas 25 082707Google Scholar

    [19]

    Gomez M R, Slutz S A, Sefkow A B, et al. 2014 Phys. Rev. Lett 113 155003Google Scholar

    [20]

    Awe T J, McBride R D, Jennings C A, et al. 2013 Phys. Rev. Lett 111 235005Google Scholar

    [21]

    Seyler C E, Martin M R, Hamlin N D 2018 Phys. Plasmas 25 062711Google Scholar

    [22]

    Shipley G A, Awe T J, Hutsel B T, Slutz S A, Lamppa D C, Greenly J B, Hutchinson T M 2018 Phys. Plasmas 25 052703Google Scholar

    [23]

    Gourdain P A, Adams M B, Davies J R, Seyler C E 2017 Phys. Plasmas 24 102712Google Scholar

    [24]

    赵海龙, 肖波, 王刚华, 王强, 章征伟, 孙奇志, 邓建军 2020 物理学报 69 035203Google Scholar

    Zhao H L, Xiao B, Wang G H, Wang Q, Zhang Z W, Sun Q Z, Deng J J 2020 Acta Phys. Sin. 69 035203Google Scholar

    [25]

    Basko M M, Kemp A J, Meyer-ter-Vehn J 2000 Nucl. Fusion 40 59Google Scholar

    [26]

    Braginskii S I 1965 Reviews of Plasma Physics (New York: Consultants Bureau) p205.

  • [1] 赵海龙, 肖波, 王刚华, 王强, 阚明先, 段书超, 谢龙, 邓建军. 磁化套筒惯性聚变中端面损失效应的一维唯象模型与影响分析. 物理学报, 2021, 70(6): 065202. doi: 10.7498/aps.70.20201587
    [2] 赵海龙, 肖波, 王刚华, 王强, 章征伟, 孙奇志, 邓建军. 磁化套筒惯性聚变一维集成化数值模拟. 物理学报, 2020, 69(3): 035203. doi: 10.7498/aps.69.20191411
    [3] 杨钧兰, 钟哲强, 翁小凤, 张彬. 惯性约束聚变装置中靶面光场特性的统计表征方法. 物理学报, 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [4] 赵继波, 孙承纬, 谷卓伟, 赵剑衡, 罗浩. 爆轰驱动固体套筒压缩磁场计算及准等熵过程分析. 物理学报, 2015, 64(8): 080701. doi: 10.7498/aps.64.080701
    [5] 张占文, 漆小波, 李波. 惯性约束聚变点火靶候选靶丸特点及制备研究进展. 物理学报, 2012, 61(14): 145204. doi: 10.7498/aps.61.145204
    [6] 余波, 应阳君, 许海波. 惯性约束聚变的中子半影成像诊断系统的优化研究. 物理学报, 2010, 59(6): 4100-4109. doi: 10.7498/aps.59.4100
    [7] 张雯. 磁场微重力效应的研究. 物理学报, 2009, 58(4): 2405-2409. doi: 10.7498/aps.58.2405
    [8] 刘红, 印海建. 外加轴向磁场下碳纳米管场效应晶体管的电学性质. 物理学报, 2009, 58(5): 3287-3292. doi: 10.7498/aps.58.3287
    [9] 张 磊, 任 敏, 胡九宁, 邓 宁, 陈培毅. 用外磁场控制电流感应磁化翻转效应中的临界电流方法. 物理学报, 2008, 57(4): 2427-2431. doi: 10.7498/aps.57.2427
    [10] 张助华, 郭万林, 郭宇锋. 轴向磁场对碳纳米管电子性质的影响. 物理学报, 2006, 55(12): 6526-6531. doi: 10.7498/aps.55.6526
    [11] 邹 秀, 宫 野, 刘金远, 宫继全. 外加磁场、电流及弧柱半径对电弧螺旋不稳定性的影响. 物理学报, 2004, 53(3): 824-828. doi: 10.7498/aps.53.824
    [12] 刘文彪, 朱建阳, 赵峥. Nernst定理与Reissner-Nordstrom黑洞Dirac场的熵. 物理学报, 2000, 49(3): 581-585. doi: 10.7498/aps.49.581
    [13] 张鹏云, 宫野, 李国炳. 轴向磁场中辐射对电弧的螺旋不稳定性的影响. 物理学报, 1997, 46(8): 1525-1534. doi: 10.7498/aps.46.1525
    [14] 刘金远, 宫野, 李国炳, 马腾才, 张林. 轴向磁场中线性热势模型电弧的螺旋不稳定性. 物理学报, 1996, 45(4): 608-618. doi: 10.7498/aps.45.608
    [15] 苟三奎. 带轴向引导磁场自由电子激光的控制参数. 物理学报, 1994, 43(9): 1441-1446. doi: 10.7498/aps.43.1441
    [16] 束小建. 带轴向引导磁场自由电子激光器中的电子轨迹与稳定性. 物理学报, 1991, 40(10): 1624-1631. doi: 10.7498/aps.40.1624
    [17] 夏蒙棼. 随机磁场中的反常扩散效应. 物理学报, 1981, 30(9): 1275-1278. doi: 10.7498/aps.30.1275
    [18] 邢益荣, 白洪耐, 张立鹏, 王智. 磁场对Ge表面场效应的影响. 物理学报, 1966, 22(3): 304-309. doi: 10.7498/aps.22.304
    [19] 张光寅, 田兆斌. 纤维锌矿型晶体的价带结构与激子谱线的轴向压谱效应. 物理学报, 1965, 21(5): 1008-1014. doi: 10.7498/aps.21.1008
    [20] 高联佩. 介绍Лифшиц学派的磁场电效应理论. 物理学报, 1958, 14(3): 280-288. doi: 10.7498/aps.14.280
计量
  • 文章访问数:  3658
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-28
  • 修回日期:  2021-02-02
  • 上网日期:  2021-06-29
  • 刊出日期:  2021-07-05

/

返回文章
返回